| 研究生: |
劉昭德 Liu, Chao-De |
|---|---|
| 論文名稱: |
側鏈含取代基聚芴的合成與特性研究 Synthesis and Characterization of Polyfluorenes with Various Lateral Substiuents |
| 指導教授: |
陳雲
Chen, Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 聚芴 、螢光感測特性 、電激發光元件 |
| 外文關鍵詞: | polyfluorene, chemosensor, pendant |
| 相關次數: | 點閱:67 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用Suzuki聚合反應合成出側鏈具有良好離去基的聚芴高分子PFBr,接著在高分子側鏈導入不同官能基benzimidazole和carbazole,合成出高分子PFBI和PFCZ,並且對其光學性質、熱性質及其應用做探討。這些高分子能夠溶於氯仿、四氫呋喃等有機溶劑。在溶液態時的吸收和放光皆與聚芴相似,分別在389 nm和420 nm附近,可知側鏈基團對主鏈的共軛性沒有影響;高分子的裂解溫度(Td)都大於400℃,顯示出有良好的熱穩定性;而玻璃轉移溫度(Tg)皆在100 ℃左右,Td和Tg大小皆隨著側鏈基團分子量上升而增大。
含benzimidazole側鏈基團之PFBI對金屬陽離子具有螢光感測特性,對Cu2+有很強的焠熄能力,其Ksv值高達2.6×106 M-1;而Cd2+和Zn2+則在螢光光譜會有16 nm的紅位移和部分焠熄現象產生;在酸性環境下PFBI會被質子化(protonation),螢光光譜亦有紅移和焠熄發生。由於carbazole為電洞傳輸材料,從電化學性質看出,當側鏈導入carbazole時,HOMO由-5.70 eV上升至-5.50 eV;嘗試將PFCZ與PF摻混(100/0、98/2、75/25、50/50、25/75、0/100)探討其對電激發光元件的影響,元件結構為[ITO/PEDOT:PSS/PF+PFCZ/LiF(1 nm)/Ca(50 nm)/Al(100 nm)],PF~PFCZ雙層元件的最大亮度分別為1410、1098、786、556、302、20 cd/m2,最大電流效率(cd/A)分別為1.92、1.08、0.94、0.82、0.76、0.18 cd/A。當PFCZ越多時,最大亮度和電流效率皆下降,此現象歸因於側鏈的carbazole在電洞注入後會形成激發雙體(excimer),此激發雙體為電洞的陷阱(trap),會造成能量損失。可將側鏈長度增加或是減少側鏈carbazole含量,減少激發雙體的形成,改善發光亮度和電流效率。
In this study, we synthesized a polyfluorene (PFBr) with good leaving groups (Br) in the side chain by Suzuki coupling reaction. Then PFBI and PFCZ, with pendant benzimidazole and carbazole respectively, were synthesized by nucleophilic substitution reaction from PFBr. The polymers were characterized by 1H-NMR, elemental analysis, DSC, TGA, GPC, optical spectra, cyclic voltametry. They are readily soluble in common organic solvents, such as chloroform and tetrahydrofuran etc. Absorption and photoluminescence (PL) spectra of PFBI and PFCZ were almost identical to polyfluorene, with peaks being around 389 nm and 420 nm respectively. They exhibited good thermal stability (Td>400℃) and high glass transition temperature (Tg>100℃).
Due to the presence of pendant benzimidazole groups. PFBI was dramatically quenched by Cu2+, it showed high selectivity and sensitivity (Ksv=2.6×106 M-1). The PL spectra red-shifted about 16 nm when PFBI was mixed with Zn2+ or Cd2+. The red-shift and quenching ℃cure in the presence of protonic acid, attributing to the protonation of benzimidazole groups. The PFCZ showed higher HOMO (5.5 eV) than PF (5.7 eV), due to hole-transporting carbazole. Electroluminescent devices, ITO/PEDOT:PSS/PF+PFCZ/LiF(1 nm)/Ca(50 nm)/ Al(100 nm), were fabricated to investigate the influence of PFCZ contents on emission characteristics. The maximum luminance (1410、1098、786、556、302、20 cd/m2) and, maximum luminance efficiency (1.92、1.08、0.94、0.82、0.76、0.18 cd/A) of the devices decreased gradually with increasing PFCZ contents (0、2、25、50、75、100 %). It was attributed to excimers which was produced from carbazole. It acted as a trap of hole, and caused energy lost. It can be prevented by increasing length of side chain or decreasing amount of carbazole.
[1] R. H. Patridge, Polymer, 24, 733 (1983).
[2] J. H. Burrououghes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K.MacKay, R. H. Friend, P. L. Burn, A. B. Holmes, Nature, 347, 539 (1990).
[3] D. Braun, A. J. Heeger, Appl. Phys. Lett., 58, 1982 (1991).
[4] D. T. McQuade, A. E. Pullen, T. M. Swager, Chem. Rev., 100, 2537(2000).
[5] A. Angeli, Gazz. Chim. Ital., 46, 279 (1916).
[6] A. F. Diaz, K. K. Kanazawa, G. P. Gardini, J. Chem. Soc. Chem. Commun. 635 (1979).
[7]蕭如娟,科儀新知,9, 65 (1988).
[8] D. Braun, A. J. Heeger, Appl. Phys. Lett., 58, 1982 (1990).
[9] T. Ajn, S. Y. Song, H. Ku, Macromolecules., 33, 6764 (2000).
[10] A. W. Grice, D. D. C. Bradley, M. T. Bernius, M. Inbasekaran, W. W. Wu,E. P. Woo, Appl. Phy. Lett., 73, 629 (1998).
[11] G. Hughes, M. R. Bryce, J. Mater. Chem., 15, 94 (2005).
[12] P. A. Kulkarni, C. J. Tonzola, A. Babel, S. A. Jenekhe, J. Mater. Chem., 16, 4556 (2004).
[13] M. Sun, Q. Niu, R. Yang, B. Du, R. Liu, W. Yang, J. Peng, Y. Cao, European Polymer Journal, 43, 1916 (2007).
[14] N. S. Cho, D.-H. Hwang, J.-I. Lee, B.-J. Jung, H.-K. Shim, Macromolecules, 35, 1224 (2002).
[15] S. O. Djobo, J. C. Berne¡de, S. Marsillac, Synthetic Metals., 122, 131 (2001).
[16] Y. Sakuratani, M. Asai, M. Tokita, S. Miyata, Synthetic metals., 123, 207 (2001).
[17] C.-W. Ko, Y.-T. Tao, J.-T. Lin, K. R. J. Thomas, Chem. Mater., 14, 357, (2002).
[18] S. H. Jin, Y. K. Sun, B. H. Shon, W. Kim, Eur. Polym. J., 36, 957 (2000).
[19] S. Y. Song, M. S. Jang, H. K. Shim, D. H. Hwang, T. Zyung, Macromolecules., 32, 1482 (1999).
[20] X. Chen, J.-L. Liao, Y. Liang, M. O. Ahmed, H.-E. Tseng, S.-A. Chen, J. Am. Chem. Soc., 125, 636 (2003).
[21]X. H. Zhou, J. C. Yan, and J. P. Macromolecules, 37, 7078-7080
[22] R. Yang, W. Wu, W. Wang, Z. Li, J. Qin, Macromol. Chem. Phys., 211, 18–26.
[23] B. Du, R. Liu, Y. Zhang, W. Yang*, W. Sun, M. Sun, J. Peng**, Y. Cao, Polymer, 48, 1245~1254.
[24] K. Cammann, U. Lemke, A. Rohen, J. Sander, H. Wilken, B.Winter, Angew. Chem .Int. Ed., 30, 516 (1991).
[25] L. C. Clark, C. Lyons, N. Y. Ann, Acad. Sci., 102, 29 (1962).
[26] 楊素華,光訊雜誌,第98 期,P.29,2002 年10 月.
[27] 郭昭輝,塑膠資訊雜誌,民國91年10月.
[28] D. A. Skoog, E. J. Holler, T. A. Nieman, Principles of Instrumental Analysis, 5th edition, Saunders College Publishing (1997).
[29] 黃孝文, 陳雲,化工資訊月刊,第15卷第3期,P.8,2001.
[30] 葉昆明,陳雲,科學發展,第385期,P.58,2005年1月.
[31] 陳信宏,陳雲,中工高雄會刊,第3期,P.72,2006年.
[32] N. J. Turro, Modern molecular photochemistry, Mill Valley, Calif.: University Science Books, 1991, p 70.
[33] S. A. Jenekhe, J. A. Osaheni, Science, 265, 765 (1994).
[34] J. R. Lakowicz . Principles of photoluminescence spectroscopy, 2nd ed, Plenum Publishers, New York. 1999, p9.
[35] J. R. Lakowicz . Principles of photoluminescence spectroscopy, 2nd ed, Plenum Publishers, New York. 1999, p237.
[36] C. Reichardt, Solvents and Solvent Effect in Organic Chemistry; Verlag Chemie: New York, 1988; Chapter 6.
[37] N. Miyaura, T. Yanagi, A. Suzuki, Synth. Commun., 11, 513 (1981).
[38] S. Janietz, D. Bradley, M. Grell, M. Inbasekaran, E. P. Woo, Appl. Phys. Lett., 73, 2453 (1998).
[39] N. Miyaura, A. Suzuki, Chem. Rev., 95, 2457 (1995).
[40] N. Miyaura, K. Yamada, H. Suginome, A. Suzuki, J. Am. Chem. Soc., 107, 972 (1985).
[41] A. R. Martin, Y. Yang, Acta Chem. Scand., 47,221 (1993).
[42] N.Dieter, J. Macromol. Rapid. Comm., 22, 1365 (2001).
[43] D. Wang, J. Wang, D. Moses, G. C. Bazan and A. J. Heeger, Macromoleculars, 5153, 33 (2000).
[44] H. Yang , X. Meng , Y. Liu , H. Hou , Y. Fan , X. Shen, Journal of Solid State Chemistry, 181, 2178–2184.
[45] Anchi Yeh, Materials Letters, 59, 1811–1814.
[46] “Taiwan-US-Canada Sci-Tech Newsbrief “, 10, No.4 (2002).
[47] M. M. Alam, C. J. Tonzola, S. A. Jenekhe, Macromolecules, , 36, 6577.
[48] J. L. Liao, X. Chen, C. Y. Liu, S. A. Chen, C. H. Su, and A. C. Su. J. Phys. Chem. B, 111, 10379-10385.