簡易檢索 / 詳目顯示

研究生: 巫松侑
Wu, Sung-yu
論文名稱: 引擎出口氣體回收二氧化碳之重組系統概念可行性研究
Study on the Feasibility of Methane Reforming by Recycled Carbon Dioxide from Gas Turbine Engine Exhausted Gas
指導教授: 賴維祥
Lai, Wei-hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 79
中文關鍵詞: 二氧化碳回收引擎重組系統
外文關鍵詞: Turbine Engine Exhausted gas, Methane Reforming, Recycled Carbon Dioxide
相關次數: 點閱:93下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藉由渦輪機出口氣體的廢熱(約500 ℃),配合甲烷/二氧化碳重組的概念,進行引擎出口氣體二氧化碳回收的可行性研究,希望能一舉達到廢熱回收與二氧化碳減量的目標。
    利用電熱與流量控制設備模擬前端渦輪引擎的出口氣體條件,再設計一具二氧化碳重組系統,並配合渦輪機出口氣體成份中氧氣含量過多的因素,進行兩組不同的實驗,一組探討是否能在甲烷量低於氧氣量的情況下找到一個最適當的溫度點,能讓甲烷與二氧化碳產生重組反應而不與氧氣燃燒,達到二氧化碳重組的目的;第二組則是添加大量的甲烷,希望在甲烷與氧氣燃燒過後,剩餘的甲烷能與二氧化碳產生重組反應,達到類似二氧化碳/甲烷部份氧化重組的效果,並探討在不同入口溫度、CH4/CO2值、觸媒個數、以及觸媒間距的情況下,二氧化碳重組的效果,與氫氣及一氧化碳的產量。
    從目前結果來看,方案一不可行;方案二最佳二氧化碳轉化率出現在單段觸媒、CH4/CO2=7、T3=550 ℃的情況下,重組後剩下1.268莫耳的二氧化碳,轉化率達50%,氫氣產量12.210莫耳,一氧化碳產量3.493莫耳。從二氧化碳減量的觀點來看,本實驗結果並不如預期,目前還無法使重組後所剩餘的二氧化碳量低於重組前;從產氫的觀點,投入7莫耳的甲烷能得到12莫耳的氫氣,效果還算不錯。

    The waste heat from gas turbine engine (about 500℃) is used as the heat resource to recycle carbon dioxide base on the concept of methane reforming. This study is the feasibility of recycled carbon dioxide from gas turbine engine exhausted gas by methane reforming. Our goal is to recycle waste heat and reduce carbon dioxide.
    The exhaust gas from gas turbine was simulated by electrical heaters and flow meters, and a system of methane reforming was designed. Because the exhaust form gas turbine contains too much oxygen, the reforming and oxidation co-existed in these experiments. In the first experiment, it is tried to find a suitable temperature to allow the methane reformed only with carbon dioxide, instead of burning with oxygen. In the second experiment, a lot of methane was used and hope the surplus methane can react with carbon dioxide instead of reacting with oxygen, just like partial oxidation reaction. The effects of the efficiency of carbon reforming were also studied, and the yield of hydrogen and carbon monoxide in variable conditions, like variable temperature degrees, the ratio of CH4/CO2, numbers of catalysts, and distance of catalysts.
    According to the results, the first experiment is not successful. The best result of the second experiment occurs in the condition of one set of catalyst, CH4/CO2=7, T3=550℃. After reforming, 1.268 mole of carbon dioxide is left, thus the conversion rate of carbon dioxide reaches 50%, and yield 12.210 mole of hydrogen and 3.493 mole of carbon monoxide. In terms of carbon dioxide reduction, this experiment is still not expected; the carbon dioxide quantity after the reforming wasn’t reduced. In terms of yield hydrogen, however, the result is acceptable: 7 mole of methane can generate 12 mole of hydrogen.

    簽名頁 簽署人須知 誌謝 中文摘要 英文摘要 第一章 緒論 1 1-1前言 1 1-2研究動機與目標 3 1-3預期成果 5 1-4文獻回顧 5 第二章 實驗基礎 10 2-1觸媒 10 2-2系統規格說明 12 2-3預想的困難與解決方案 13 2-4理論分析軟體測試 14 第三章 實驗設備與方法 19 3-1 實驗流程 19 3-2實驗設備 20 3-2-1氣體流量控制設備 22 3-2-2水氣注入設備 23 3-2-3加熱設備 24 3-2-4溫度量測與擷取設備 26 3-2-5二氧化碳重組器 30 3-2-6觸媒 35 3-2-7氣體收集系統 36 3-2-8氣體成份量測設備 38 3-3實驗參數 39 3-4實驗系統檢測 41 3-5實驗操作程序 42 第四章 實驗結果與討論 44 4-1方案一實驗結果 44 4-2方案一總結 47 4-3方案二實驗結果 48 4-3-1反應溫度 48 4-3-2 GC量測結果 53 4-4觸媒數增加之實驗結果 57 第五章 結論 63 第六章 未來工作 65 參考文獻 66 自述 68

    [1]行政院政經濟部能源政策白皮書,民國94年。
    [2]F. Fischer, H. Tropsch, “Conversion of methane into hydrogen and carbon monoxide,” Brennstoff Chem., 3, 39 (1928).
    [3]S. B. Wang, G. Q. (Max) Lu, G. J. Millar, “Carbon Dioxide Reforming of Methane to Produce Synthesis Gas over Metal-Supported Catalysts: State of the Art,” Energy & Fuel, 10, 896 (1996).
    [4]W. Cao, D. Zheng, “Thermodynamic Performance of O2/CO2 Gas Turbine Cycle with Chemical Recuperation by CO2-Reforming of Methane,” Fuel, 86, 2864 (2007).
    [5]C. S. Song, “Tri-Reforming: A New Process for Reducing CO2 Emissions,” Chemical Innovation, 31, 21 (2001).
    [6]J. R. Rostrupnielsen, J. H. B. Hansen, “Carbon Dioxide-Reforming of Methane over Transition metals,” Journal of Catalysis, 144, 38 (1993).
    [7]S. B. Wang, G. Q. Lu, “Role of CeO2 in Ni/CeO2–Al2O3 Catalysts for Carbon Dioxide Reforming of Methane,” Energy Fuels, 10, 896 (1998).
    [8]M. C. J. Bradford, M. A. Vannice, “CO2 Reforming of CH4 over Supported Ru Catalysts,” Journal of Catalysis, 183, 69 (1999).
    [9]A. Sacco, Jr., F. W. A. H. Geurts, G. A. Jablonski, S. Lee, and R. A. Gatell, “Carbon Deposition and Filament Growth on Fe-foil, Co-foil, and Ni-foil using CH4-H2-H2O-CO-CO2 Gas-mixtures,” Journal of Catalysis, 119, 322 (1989).
    [10]A. M. Gadalla, B. Bower, “The Role of Catalyst Support on the Activity of Nickel for Reforming Methane with CO2,” CHEMICAL ENGINEERING SCIENCE, 43, 3049 (1988).
    [11]E. Ruckenstein, Y. H. Hu, “Carbon Dioxide Reforming of Methane over Nickel/Alkaline Earth Metal Oxide Catalysts,” Applied Catalysis A:General, 133, 149 (1995).
    [12]J. S. Choi, K. I. Moon, Y. G. Kim, J. S. Lee, C. H. Kim, D. L. Trimm, “Stable Carbon Dioxide Reforming of Methane over Modified Ni/Al2O3 Catalysts,” Catalysts Letter, 52, 43 (1998).
    [13]胡興中,“觸媒原理與應用”,高立出版社,台北,2005年,10月。
    [14]J. A. Peter. ARL Technical Report 88-008, the Pennsylvania University.
    [15]W. Pan, “Tri-Reforming and Combined Reforming of Methane for Producing Syngas with Desired H2/CO Ratios,” Ph.D. thesis, Pennsylvania State University (2002).
    [16]W. Pan, C. S. Song, “Computational Analysis of Energy Aspects of CO2 Reforming and Oxy-CO2 Reforming of Methane at Different Pressures,” Journal of American Chemical Society, 809, 316 (2002).
    [17]K. C. Truker, “A Flash Vaporization System for Detonation Of Hydrocarbon Fuels in a Pulse Detonation Engine,” Department of the Air Force Air University (2005).

    下載圖示 校內:2009-07-21公開
    校外:2009-07-21公開
    QR CODE