簡易檢索 / 詳目顯示

研究生: 陳盈宏
Chen, Ying-Hong
論文名稱: 利用空隙陣列結合圖案化基板改善氮化鎵發光二極體之光電特性
Improvement of Optoelectronic Characteristics of GaN-based LED by Air Gap Array and Patterned Sapphire Substrates
指導教授: 賴韋志
Lai, Wei-Chih
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 72
中文關鍵詞: 空隙磊晶側向成長氮化鎵發光二極體內部量子效率
外文關鍵詞: Air Gap, ELOG, GaN, LED, IQE
相關次數: 點閱:118下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討將空隙(Air Gap)陣列置入未摻雜氮化鎵(u-GaN)並結合圖案化藍寶石基板(PSS)LED之光電特性,期望可以藉由Air Gap與u-GaN折射率的不同,增加光在內部散射機率,進而提升光輸出功率。

    實驗方面利用磊晶側向成長(ELOG)技術將Air Gap陣列置入Conventional LED 及PSS LED,並且分析了Conventional LED、Air Gap in Conventional LED、PSS LED及Air Gap in PSS LED四種試片。於電流20mA注入下,順向導通偏壓分別為3.40V、3.41V、3.45V及3.46V,相較於Conventional LED增加0.01~0.06V;而光輸出功率分別為3.06mW、3.99mW、4.72mW與5.29mW,相較於Conventional LED明顯提升了0.93~2.23mW,約增加30.39~72.88%。

    此外,我們得到內部量子效率(IQE)及光萃取效率(LEE),發現Air Gap in PSS LED有較高的IQE,這是因為Air Gap in PSS LED具有高品質的磊晶薄膜。最後利用Trace Pro光學模擬軟體驗證實驗所量測之LEE。

    In this study, we discussed optoelectronic characteristics of GaN-based light emitting diodes (LEDs) with combined air gap array and patterned sapphire substrate (PSS). We expected to increase the light scattering by the refractive index difference between air gap and GaN could enhance guided-light scattering efficiency.

    In this experiment, we inserted air gap array in conventional and PSS LEDs by epitaxial lateral overgrowth (ELOG) technology and analyzed optoelectronic characteristics of conventional LED, air gap in conventional LED, PSS LED, and air gap in PSS LED. Under 20-mA current injections, the forward voltage were 3.40, 3.41, 3.45, and 3.46 V for conventional LED, air gap in conventional LED, PSS LED, and air gap in PSS LED, respectively. The 20-mA of light output power of conventional LED, air gap in conventional LED, PSS LED, and air gap in PSS LED were 3.06, 3.99, 4.72, and 5.29 mW, respectively.

    Furthermore, we obtained the internal quantum efficiency (IQE) and light extraction efficiency (LEE). The air gap in PSS LED exhibited larger IQE contrast to other LEDs because of the improved quality of lateral growth-induced crystal. Finally, we verified the LEE between the result of experiment and simulation by Trace Pro optical simulation software.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第一章 序論 1 1.1 背景 1 1.2 研究動機與目的 2 參考文獻 5 第二章 實驗原理、製程設備與量測系統 9 2.1 實驗原理 9 2.1.1 氮化鎵發光二極體(Light Emitting Diodes, LEDs)原理 9 2.1.2 光萃取效率(Light Extraction Efficiency, LEE)原理 10 2.1.3 金屬-半導體歐姆接觸(Metal-Semiconductor Ohmic Contact) 12 2.1.4 二極體電流-電壓之理想因子(Ideality Factor, nideal) 14 2.2 製程設備 17 2.2.1 有機金屬氣相磊晶(Metal Organic Vapor Phase Epitaxy, MOVPE) 17 2.2.2 電子束蒸鍍(Electric Beam Evaporator) 17 2.2.3 感應耦合式電漿蝕刻(Inductive Coupled Plasma, ICP) 18 2.2.4 電漿輔助化學氣相沉積(Plasma Enhanced Chemical Vapor Deposition, PECVD) 19 2.3 量測系統 20 2.3.1 發光二極體輸出功率(Output Power)量測系統 20 2.3.2 電流-電壓量測系統 20 2.3.3 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 21 參考文獻 32 第三章 實驗方式與製程步驟 34 3.1 空隙(Air Gap)陣列置於未摻雜氮化鎵層製程與磊晶步驟 34 3.1.1 3μm SiO2圓柱製程步驟 34 3.1.2 空隙(Air Gap)陣列置於未摻雜氮化鎵層磊晶步驟 37 3.2 氮化鎵發光二極體元件製程 39 3.2.1 黃光製程 39 3.2.2 濕蝕刻(Wet Etching)及高台蝕刻(Mesa Etching) 40 3.2.3 熱處理(Thermal Annealing)製程 41 3.2.4 p-n金屬電極蒸鍍 41 參考文獻 48 第四章 實驗結果分析與討論 49 4.1 磊晶成長機制 49 4.2 GaN發光二極體光特性分析 49 4.3 GaN發光二極體電特性分析 52 4.4 內部量子效率(IQE)與光萃取效率(LEE) 54 4.5 Trace Pro光學模擬 55 參考文獻 68 第五章 結論與未來展望 70 5.1 結論 70 5.2 未來展望 72

    第一章
    [1] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes”, Appl. Phys. Lett., vol. 64, no. 13, pp. 1687-1689, (1994).
    [2] S. Nakamura and G. Fasol, The Blue Laser Diodes, Springer. (1997).
    [3] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright green InGaN single-quantum-well structure light-emitting diodes”, Jpn. J. Appl. Phys., vol. 34, no.10B, pp. L1332-L1335, (1995).
    [4] G. S. Nakamura, “InGaN-based violet laser diodes”, Semicond. Sci. Technol. vol. 14, pp. R27, (1999).
    [5] 史光國, “半導體發光及雷射二極體材料技術”, 全華科技圖書股份有限公司, (2004).
    [6] E. F. Schubert, “Light-Emitting Diodes”, Cambridge University Press, (2006).
    [7] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K .Chocho, “Continuous-wave operation of InGaN/GaN/ AlGaN-based laser diodes grown on GaN substrates”, Appl. Phys. Lett., vol. 72, no. 16, pp. 2014-2016, (1998).
    [8] M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors”, J. Appl. Phys., vol. 79, no. 10, pp. 7433-7473, (1996).
    [9] S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: Processing, defects, and devices”, J. Appl. Phys., vol. 86, no. 1, pp.1, (1999).
    [10] E. F. Schubert and J. K. Kim, “Solid-State Light Sources Getting Smart”, Science, vol. 308, no. 5726, pp. 1274-1278, (2005).
    [11] Z. H. Feng, Y. D. Qi, Z. D. Lu, K. M. Lau, “GaN-based blue light-emitting diodes grown and fabricated on patterned sapphire substrates by metalorganic vapor-phase epitaxy”, Journal of Crystal Growth, vol. 272, pp. 327-332, (2004).
    [12] H. Y. Shin, S.K. Kwon , Y. I. Chang, M. J .Cho, K. H. Park, “Reducing dislocation density in GaN films using a cone-shaped patterned sapphire substrate”, Journal of Crystal Growth, vol. 311, pp. 4167-4170, (2009).
    [13] W. K. Wang, D. S. Wuu, S. H. Lin, S. Y. Huang, K. S. Wen, R. H. Horng, “Growth and characterization of InGaN-based light-emitting diodes on patterned sapphire substrates”, Journal of Physics and Chemistry of Solids, vol.69, pp.714-718, (2008).
    [14] T. S. Kim, S. M. Kim, Y. H. Jang, and G. Y. Jung, “Increase of light extraction from GaN based light emitting diodes incorporating patterned structure by colloidal lithography”, Appl. Phys. Lett., vol. 91, no. 17, pp. 1114-1116, (2007).
    [15] H. W. Huang, F. I. Lai, J. K. Huang, C. H. Lin, K. Y. Lee, C. F. Lin, C. C. Yu and H. C. Kuo, “Enhancement of light output power of GaN-based light-emitting diodes using a SiO2 nano-scale structure on a p-GaN surface”, Semicond. Sci. Technol, vol. 25, no. 6, pp. 5007-5010, (2010).
    [16] H. W. Huang, C. H. Lin, C. C. Yu, B. D. Lee, C. H. Chiu, C. F. Lai, H. C. Kuo, K. M. Leung, T. C. Lu and S. C.Wang, “Enhanced light output from a nitride-based power chip of green light-emitting diodes with nano-rough surface using nanoimprint lithography”, Nanotechnology, vol. 19, no. 18, pp. 5301-5304, (2010).
    [17] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface”, J. Appl. Phys., vol. 93, no. 11, pp.9383-9385, (2003).
    [18] H. W. Huang, C. F. Lai, W. C. Wang, T. C. Lu, H. C. Kuo, S. C. Wang, R. J. Tsai, and C. C. Yu, “Efficiency Enhancement of GaN-Based Power-Chip LEDs with Sidewall Roughness by Natural Lithography”, Electrochemical and Solid-State Letters, vol. 10, no. 2, pp. H59-H62, (2007).
    [19] C. F. Lin, Z. J. Yang, B. H. Chin, J. H. Zheng, J. J. Dai, B. C. Shieh, and C. C. Chang, “Enhanced Light Output Power in InGaN Light-Emitting Diodes by Fabricating Inclined Undercut Structure”, Journal of The Electrochemical Society, vol. 153, no. 12, pp. G1020-G1024, (2006).
    [20] C. S. Chang, S. J. Chang, Y. K. Su, Senior Member, IEEE, C. T. Lee, Senior Member, IEEE, Y. C. Lin, W. C. Lai, S. C. Shei, J. C. Ke, and H. M. Lo, “Nitride-Based LEDs With Textured Side Walls”, IEEE Photon. Tech. Lett., vol. 16, no. 3, pp. 750-752, (2004).
    [21] T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, and M. Ikedaa, “Characterization of threading dislocations in GaN epitaxial layers”, Appl. Phys. Lett., vol. 76, no. 23, pp. 3421-3423, (2000).
    [22] T. Mukai, K. Takekawa, S. Nakamura, “InGaN-based blue light-emitting diodes grown on epitaxially laterally overgrown GaN substrates”, Jpn. J. Appl. Phys., vol. 37, no. 7B, pp. L839-L841, (1998).
    [23] C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, P. Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, “Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template”, Appl. Phys. Lett., vol. 93, no. 8, pp. 1108-1110, (2008).
    [24] K. Y. Zang, S. J. Chua, J. H. Teng, N. S. S. Ang, A. M. Yong, and S. Y. Chow, “Nanoepitaxy to improve the efficiency of InGaN light-emitting diodes”, Appl. Phys. Lett., vol. 92, no. 24, pp. 3126-3128, (2008).
    [25] I. Kidoguchi, A. Ishibashi, G. Sugahara, and Y. Ban, “Air-bridged lateral epitaxial overgrowth of GaN thin films”, Appl. Phys. Lett., vol. 76, no. 25, pp. 3768-3770, (2000).
    [26] H. G. Kim, H. K. Kim, H. Y. Kim, J. H. Ryu, J. H. Kang, N. Han, P. Uthirakumar, and C. H. Hong, “Impact of two-floor air prism arrays as an embedded reflector for enhancing the output power of InGaN/GaN light emitting diodes”, Appl. Phys. Lett., vol. 95, no. 22, pp. 1100-1112, (2009).
    [27] H. H. Huang, C. L. Chao, T. W. Chi, Y. L. Chang, P. C. Liu , L. W. Tu, J. D. Tsay, H. C. Kuo, S. J. Cheng , W. I. Lee, “Strain-reduced GaN thick-film grown by hydride vapor phase epitaxy utilizing dot air-bridged structure”, Journal of Crystal Growth, vol. 311, pp. 3029-3032, (2009).
    第二章
    [1] 楊亞諭, “光致電化學氧化與壓印技術於氮化物發光二極體之研究”, 國立成功大學光電科學與工程研究所, (2009).
    [2] Donald A. Neamen 原著, 楊賜麟 譯, “半導體物理與元件”, 美商麥格爾.希爾國際股份有限公司, 台灣分公司, (2005).
    [3] 施敏, “半導體元件物理製程技術”, 國立交通大學出版社, (2007).
    [4] 龔鈺茗, “表面處理對P型氮化鎵特性影響之研究暨非螢光粉式混色發光二極體元件之研製”, 國立台南大學電機工程學系光電工程碩士班, (2010).
    [5] 張詠翕, “以聚焦離子束製程的AlGaN/GaN量子結構之研究”, 國立中山大學物理學系研究所, (2009).
    [6] 杜尚儒, “透明導電膜沉積於矽基板之異質接面太陽能電池研究”, 南台科技大學光電工程研究所, (2008).
    [7] D. Zhu, J. Xu, A. N. Noemaun, J. K. Kim, E. F. Schubert, M. H. Crawford, and D. D. Koleske, “The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes”, Appl. Phys. Lett. vol. 94, no. 8, pp. 1113-1115, (2009).
    [8] J. Xu, M. F. Schubert, A. N. Noemaun, D. Zhu, J. K. Kim, E. F. Schubert, M. H. Kim, H. J. Chung, S. Yoon, C. Sone, and Y. Park, “Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes”, Appl. Phys. Lett. vol. 94, no. 1, pp. 1113-1115, (2009).
    [9] H. C. Casey, J. Muth, S. Krishnankutty, and J. M. Zavada, “Dominance of tunneling current and band filling in InGaN/AlGaN double heterostructure blue light-emitting diodes”, Appl. Phys. Lett. vol. 68, no. 20, pp. 2867-2869, (1996).
    [10] P. Perlin, M. Osiński, P. G. Eliseev, V. A. Smagley, J. Mu, M. Banas, and P. Sartori, “Low-temperature study of current and electroluminescence in InGaN/AlGaN/GaN double-heterostructure blue light-emitting diodes”, Appl. Phys. Lett. vol. 69, no. 12, pp. 1680-1682, (1996).
    [11] K. Mayes, A. Yasan, R. McClintock, D. Shiell, S. R. Darvish, P. Kung, and M. Razeghi, “High-power 280 nm AlGaN light-emitting diodes based on an asymmetric single-quantum well”, Appl. Phys. Lett. vol. 84, no. 7, pp. 1046-1048, (2004).
    [12] J. M. Shah, Y. L. Li, T. Gessmann, and E. F. Schubert, “Experimental analysis and theoretical model for anomalously high ideality factors (n>>2.0) in AlGaN-GaN p-n junction diodes”, J. Appl. Phys., vol. 94, no. 4, pp. 2627-2630, (2003).
    第三章
    [1] W. C. Lai, Y. Y. Yang, L. C. Peng, S. W. Yang, Y. R. Lin, and J. K. Sheu, “GaN-based light emitting diodes with embedded SiO2 pillars and air gap array structures”, Appl. Phys. Lett., vol. 97, no. 8, pp. 1103-1105, (2010).
    [2] D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, S. Y. Huang, and C. F. Lin, “Defect reduction and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template”, Appl. Phys. Lett., vol. 89, no. 16, pp. 1105-1107, (2006).
    第四章
    [1] B. Beaumont, M. Vaille, G.. Nataf, A. Bouillé, J. C. Guillaume, P. Vénnègues, S. Haffouz and P. Gibart, “Mg-enhanced lateral overgrowth of GaN on patterned GaN/sapphire substrate by selective Metal Organic Vapor Phase Epitaxy”, MRS Internet J. Nitride Semicond. RES. vol. 3, no. 20, pp. 1-12, (1998).
    [2] E. F. Schubert, “Light-Emitting Diodes”, Cambridge University Press, (2006).
    [3] D. Zhu, J. Xu, A. N. Noemaun, J. K. Kim, E. F. Schubert, M. H. Crawford, and D. D. Koleske, “The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes”, Appl. Phys. Lett. vol. 94, no. 8, pp. 1113-1115, (2009).
    [4] J. Xu, M. F. Schubert, A. N. Noemaun, D. Zhu, J. K. Kim, E. F. Schubert, M. H. Kim, H. J. Chung, S. Yoon, C. Sone, and Y. Park, “Reduction in efficiency droop, forward voltage, ideality factor, and wavelength shift in polarization-matched GaInN/GaInN multi-quantum-well light-emitting diodes”, Appl. Phys. Lett. vol. 94, no. 1, pp. 1113-1115, (2009).
    [5] 施敏, “半導體元件物理製程技術”, 國立交通大學出版社, (2007).
    [6] H. Y. Ryu, H. S. Kim, and J. I. Shim, “Rate equation analysis of efficiency droop in InGaN light emitting diodes”, Appl. Phys. Lett. vol. 95, no. 8, pp. 1114-1116, (2009).
    [7] E. Trybus, O. Jani1, S. Burnham, I. Ferguson, C. Honsberg, M. Steiner, and W. A. Doolittle, “ Characteristics of InGaN designed for photovoltaic applications”, Phys. Stal. Sol., vol. 5, no. 6, pp. 1843-1845, (2008).
    [8] Z. Liu, K. Wang, X. Luo, and S. Liu, “Precise optical modeling of blue light-emitting diodes by Monte Carlo ray-tracing”, Optical Express, vol. 18, no. 9, pp. 9398-9412, (2010).

    無法下載圖示 校內:2014-07-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE