簡易檢索 / 詳目顯示

研究生: 阮氏妙賢
Hien, Nguyen Thi Dieu
論文名稱: 利用電磁誘發透明探討銣原子的超精細結構
The Hyperfine Structures of Rubidium Atom Using Electromagnetically Induced Transparency
指導教授: 蔡錦俊
Tsai, Chin-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 62
外文關鍵詞: Rubidium, Hyper ne Structures, Electromagnetically Induced Transparency
相關次數: 點閱:59下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this work, we study the hyperfine structure of 87Rb in D-states by using Electromagnetically Induced Transparency (EIT). EIT is an atomic destructive phenomenon which is given by the interaction between a laser and an atom. In EIT, a weak probe light field, in resonance with an atomic transition, propagates through a medium with reduced absorption due to interaction with a strong coupling light field. EIT has studied in three energy levels included: ladder, Λ, V configurations.
    In our experiment, we study the ladder type EIT of Rubidium atoms. The probe beam is strongly absorption with the |1> → |2> transition with the Rabi frequency Ωp. The coupling beam with the Rabi frequency Ωc is in the |2> → |3> transition. The decay rate of state |2> and |3> are given by Γ2 and Γ3, respectively. The EIT appears when the weak probe laser beam at 780.2 nm (5S1/2 → 5P3/2) and the strong coupling laser beam at 572.62 nm, 572.57 nm or 776 nm (5P3/2 → 7D3/2, 7D5/2 or 5P3/2 → 5D5/2). To improve the EIT to noise ratio, the laser frequency will be stabilized to a rubidium hyperfine transition to narrow the laser line-width while the coupling laser scanned cross over the transition of excited states.

    Acknowledgments . . . . . . . . . . . . I Abstract . . . . . . . . . . . . . . . . . . . . V List of Figures . . . . . .. . . . . . . . . . . . VI Chapter 1: Introduction . . . . . . . . . . . . . . 1 1.1 Rubidium Atoms . . . . . . . . . . . . . . . . 2 1.1.1 Properties of Rubidium Atoms . . . . . . . . 2 1.1.2 Fine Structure and hyper ne structure of Rubidium Atoms . 3 1.2 Electromagnetically Induced Transparency . . . . 7 Chapter 2: Theoretical Concepts . . . . . .. . . . . . . . . . 8 2.1 Density matrix equation of motion . . . . . . . . . . . . 8 2.1.1 Interaction picture and Density matrix . . . . . . . . 8 2.1.2 Two level system . . . . . . . . . . . . . . . . . 10 2.1.3 Three level system . . . . . . . . . . . . . . . 13 2.2 The Dressed state atom approaches . . . . . . . . . . 18 2.3 Intensity . . . . . . . . . . . . .. . . . . . . . . . 21 Chapter 3: Experiment Equipment and Setup . .. . . . . . 24 3.1 Experiment Setup . . . . . . . . . . . . . . . . . . 24 3.2 Laser systems . . . . . . . . . .. . . . . . . 25 3.2.1 External diode cavity laser . . . . . . . . . . . 25 3.2.2 Ti: Sapphire laser . . . . . . . . . . . . . . . . . . 28 3.2.3 Dye Ring laser . . . . . . . . . . . . . . . . . . 29 3.3 Doppler saturation absorption spectroscopy . . . . . . . 30 3.3.1 Experiment setup . . . . . . . . . . . . . . 30 3.3.2 Rubidium DFSAS . . . . . . . . . . . . . . . . . 31 3.4 Laser stabilization . . . . . . . . . . . . . . . . . . 33 Chapter 4: Result and Analysis . . . . . . . . . . . . . 35 4.1 The spectrum for 5S1/2 → 5P3/2 → 5D5/2 . . . . . . . 35 4.2 The spectrum for 5S1/2 → 5P3/2 → 7D3/2 . . . . . . 46 4.3 The spectrum for 5S1/2 → 5P3/2 → 7D5/2 . . . . . 49 Chapter 5: Conclusion . . . . . . . . . . . . .. . . . . 55 References . . . . . . . . . . . . . . . . . .. . . . . . 56 Appendix . . . . . . . . . . . . . . . . . .. . . . . . . 58

    [1] W. A. van Wijngaarden, J. Li, and J. Koh, Hyperfine interaction constants of the 8D3/2 state in 85Rb using quantum-beat spectroscopy, Phys. Rev. A 48, 829 (1993).
    [2] M. J. Snadden, A. Bell, E. Riis, and A. Ferguson, Two photon spectroscopy of laser cooled Rb using a mode-locked laser, Opt. Commun. 125, 70 (1996).
    [3] A. Perez Calvan, Y. Zhao, L. A. Orozco, E. Gomez, A. D. Lange, F. Baumer, and G. D. Sprouse, Comparison of hyperfine anomalies in the 5S1/2 and 6S1/2 levels of 85Rb and 87Rb, Phys. Lett. B 655, 114 (2007).
    [4] S. E. Harris and Y. Yamamoto, Photon switching by quantum interference, Phys. Rev. Lett. 81, 3611 (1998).
    [5] O. Kocharovskaya, Amplication and lasing without inversion, Phys. Rev. 219, 175 (1992).
    [6] R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, and T. P. Spiller, Applications of electromagnetically induced transparency to quantum information processing, J. Mod. Opt. 51, 2441 (2004).
    [7] A. Imamoglu and S. E. Harris, Opt. Lett. 14, 1344 (1989).
    [8] W. Demtroder, Atoms, Molecules and Photons, Springer, (2006).
    [9] D. A. Steck, Rubidium 87 D Line Data, Revision 1.6 (2003), http://steck.us/alkalidata.
    [10] Fulton DJ, Shepherd S, Moseley RR, Sinclair BD, Dunn MH, Continuous-wave electromagnetically induced transparency: A comparison of V, Lambda, and cascade systems, Phys Rev A 52, 2302 (1995).
    [11] M. Yan, E. G. Rickey and Y. Zhu Electromagnetically induced transparency in cold rubidium atoms, J. Opt. Soc. Am. B 18, 1057 (2001).
    [12] J.J. Sakurai, Advanced quantum mechanics, Addison and Wesley, (1994).
    [13] A. Krishna, K. Pandey, A. Wasan and V. Natarajan, High-resolution hyperfine spectroscopy of excited states using electromagnetically induced transparency, Europhys. Lett. A 72, 221 (2005).
    [14] Z. S. He, J. H. Tsai, Y. Y. Chang, C. C. Liao, and C. C. Tsai, Ladder-type Electromagnetically Induced Transparency with Optical Pumping Effect, Phys. Rev. A 87, 033402 (2013).
    [15] V. Barger and R. PhillipsJulio Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment, Phys. Rev. A 51, 576 (1995).
    [16] C. J. Foot, Atomic Physics, Oxford University Press, Oxford, (2005).
    [17] C.Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions: Basic Process and Applications, Wiley Press, New York, (1992).
    [18] Z. S. He, Transition properties of Ladder type Electromagnetically Induced Transparency in Cesium Atoms, Ph. D Dissertation, National Cheng Kung University (2013).
    [19] Coherent 899-21 Dye Ring Laser, Operators Manual, (1990).
    [20] J.A. Smith,A.T. Brown, Xinzhao Chu, Wentao Huang, J. Wigg, LabVIEW-based laser frequency stabilization system with phase-sensity detection servo loop for Doppler LIDAR
    applications, Opt. Eng. 47, 114201 (2008).
    [21] M. S. Safronova and U. I. Safronova, Critically evaluated theoretical energies, lifetimes, hyperfine constants, and multipole polarizabilities in 87Rb, Phys. Rev. A 83, 052508 (2011).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE