| 研究生: |
熊翌成 Hsiung, Yi-Cheng |
|---|---|
| 論文名稱: |
細胞外基質對子宮頸癌細胞硬度的影響 The Effects of Extracellular Matrix on Cervical Cancer Cell Rigidity |
| 指導教授: |
張憲彰
Chang, Shien-Chang |
| 共同指導教授: |
沈孟儒
Shen, Meng-Ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 細胞外基質 、整合素 、細胞力學 、原子力顯微鏡 、免疫螢光 |
| 外文關鍵詞: | extracellular matrix, integrin, cell mechanics, atomic force microscopy, immunofluorescent |
| 相關次數: | 點閱:117 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
細胞外基質(extracellular matrix, ECM)能提供網狀結構有利於細胞貼附、組織及器官的形成。而整合素(integrin)是細胞膜上的受體可與細胞外基質結合且決定細胞貼附、移動、生長、增殖及生存之能力。過去研究發現整合素與細胞外基質結合能影響細胞內信號(intracellular signals)促進細胞骨架的形成或產生各種細胞反應。但很少有研究再探討細胞生長於細胞外基質上的細胞力學(cell mechanics)反應,因此我們假設細胞生長於細胞外基質藉由細胞骨架的連接聚集,能增強細胞力學之表現。
因此選用了原子力顯微鏡(atomic force microscopy, AFM)可以細胞正常生理環境下量測且具有高解析度的優點,取得細胞形貌並配合赫茲接觸理論來計算細胞機械性質。量測人類子宮頸癌細胞(cervical cancer CaSki cell)生長於不同的環境下,發現細胞生長在纖維連接蛋白(fibronectin)鑲嵌(25 μg/ml)之培養皿有較強的韌性(0.61 kPa),而生長在一般培養皿則韌性較低(0.39 kPa)。進一步利用免疫螢光染色觀察細胞骨架和focal adhesion size,發現focal adhesion size在鑲嵌25 μg/ml纖維連接蛋白時達到飽和大小(1.44 μm2),肌動蛋白(actin)呈現coiled-coil型態,證實細胞外基質能促進細胞貼附降低細胞移動。
The extracellular matrix (ECM) provides the structural framework for the formation of tissues and organs. Integrin is a cell surface receptor that integrin-matrix interactions determine cell adhesion, motility, growth, proliferation, and survival. Previous studies found that integrin-matrix interactions influence cell differentiation and commitment, as well as intracellular signals, promote cytoskeleton formation and cell responses. Only very few studies have addressed the cell mechanics of cell-ECM complex interactions. Thus, our hypothesis is that the cell growth with ECM enhances the connection of cytoskeletons, results in stronger cell mechanics behavior.
Aiming to verify this hypothesis, we need to get the information of cell shape and mechanical properties. The atomic force microscopy (AFM) has high resolution to image living cells in similarly physiology environment and can be used to evaluate mechanical properties of cells by using Hertz contact theory. In this study, we compared the human cervical cancer CaSki cell growth with different environments, then found that overall cell stiffness of cells growth in 25 μg/ml fibronectin-coated dish (0.61 kPa) higher than growth in bare dish (0.39 kPa). Furthermore, immunofluorescent method was also employed to observe the focal adhesion size (FA size) and cytoskeleton, found that the maximum of FA size was on 25 μg/ml fibronectin-coated dish, and actin was coiled-coil fiber. According to immunofluorescent, prove that ECM promotes cell adhesion and reduces migration.
[1] Sandrine Bourdoulous, Gertraud Orend, Deidre A. MacKenna, Renata Pasqualini, and Erkki Ruoslahti, Fibronectin matrix regulates activation of RHO and CDC42 GTPases and cell cycle progression, Journal of Cell Biology, 143 (1998), 267-276.
[2] Stephen A. Klotz, Fungal adherence to the vascular compartment: a critical step in the pathogenesis of disseminated candidiasis, Clinical Infectious Diseases, 14 (1992), 340-347.
[3] B.D. Gomperts, P.E.R. Tatham, and I.M. Kramer, Signal transduction. (Academic Press, San Diego, Calif., 2002).
[4] Ioannis Vakonakis, and Iain D Campbell, Extracellular matrix: from atomic resolution to ultrastructure, Current Opinion in Cell Biology, 19 (2007), 578-583.
[5] Jonathan D. Humphries, Adam Byron, and Martin J. Humphries, Integrin ligands at a glance, Journal of Cell Science, 119 (2006), 3901-3903.
[6] Kyle R. Legate, Eloi Montañez, Oliver Kudlacek, and Reinhard Fässler , ILK, PINCH and parvin: the tIPP of integrin signaling, Nature Reviews Molecular Cell Biology, 7 (2006), 20-31.
[7] M Amin Arnaout, Simon L Goodman, and Jian-Ping Xiong, Structure and mechanics of integrin-based cell adhesion, Current Opinion in Cell Biology, 19 (2007), 495-507.
[8] Bing-Hao Luo, Christopher V. Carman, and Timothy A. Springer, Structural basis of integrin regulation and signaling, Annual Review of Immunology, 25 (2007), 619-647.
[9] Richard O. Hynes, Integrins: bidirectional, allosteric signaling machines, Cell, 110 (2002), 673-687.
[10] Satyajit K. Mitra, Daniel A. Hanson, and David D. Schlaepfer, Focal adhesion kinase: in command and control of cell motility, Nature Reviews Molecular Cell Biology, 6 (2005), 56-68.
[11] Michael C. Brown, and Christopher E. Turner, Paxillin: adapting to change, Physiological Reviews, 84 (2004), 1315-1339.
[12] Catherine G. Galbraith, Kenneth M. Yamada, and Michael P. Sheetz, The relationship between force and focal complex development, The Journal of Cell Biology, 159 (2002), 695-705.
[13] Ke Hu, Lin Ji, Kathryn T. Applegate, Gaudenz Danuser, and Clare M. Waterman-Storer, Differential transmission of actin motion within focal adhesions, Science, 315 (2007), 111-115.
[14] Claire M. Brown, Benedict Hebert, David L. Kolin, Jessica Zareno, Leanna Whitmore, Alan Rick Horwitz, and Paul W. Wiseman, Probing the integrin-actin linkage using high-resolution protein velocity mapping, The Journal of Cell Biology, 119 (2006), 5204-5214.
[15] Guoying Jiang, Grégory Giannone, David R. Critchley, Emiko Fukumoto, and Michael P. Sheetz, Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin, Nature, 424 (2003), 334-337.
[16] Masaaki Yoshigi, Laura M. Hoffman, Christopher C. Jensen, H. Joseph Yost, and Mary C. Beckerle, Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement, The Journal of Cell Biology, 171 (2005), 209-215.
[17] Carol A. Otey, and Olli Carpen, Alpha-actinin revisited: a fresh look at an old player. Cell Motility and the Cytoskeleton, 58 (2004), 104-111.
[18] Pakorn Kanchanawong, Gleb Shtengel, Ana M. Pasapera, Ericka B. Ramko, Michael W. Davidson, Harald F. Hess, and Clare M.Waterman, Nanoscale architecture of integrin-based cell adhesions, Nature, 468 (2010), 580-584.
[19] Catherine G. Galbraith, and Michael P. Sheetz, A micromachined device provides a new bend on fibroblast traction forces, Proceedings of the National Academy of Sciences of the United States of America: PNAS, 94 (1997), 9114-9118.
[20] Ernst-Ludwig Florin, Arnd Pralle, J. K. Heinrich Hörber, and Ernst H. K. Stelzer, Photonic force microscope based on optical tweezers and two-photon excitation for biological applications, Journal of Structural Biology, 119 (1997), 202-211.
[21] Shunichi Usami, Hsuan-Hsu Chen, Yihua Zhao, Shu Chien, and Richard Skalak, Design and construction of a linear shear stress flow chamber, Annals of Biomedical Engineering, 21(1993), 77-83.
[22] Andreas R. Bausch, Winfried Möller, and Erich Sackmann, Measurement of local viscoelasticity and forces in living cells by magnetic tweezers, Biophysical Journal, 76 (1999), 573-579.
[23] D. E. Discher, N. Mohandas, and E. A. Evans, Molecular maps of red cell deformation: hidden elasticity and in situ connectivity, Science, 266 (1994), 1032-1035.
[24] Subra Suresh, Biomechanics and biophysics of cancer cells, Acta Biomaterialia, 3 (2007), 413-438.
[25] G. Binnig, C. F. Quate, and Ch. Gerber, Atomic force microscopy, Physical Review Letters, 56 (1986), 930-934.
[26] Ernst-Ludwig Florin, Vincent T. Moy, and Hermann E. Gaub, Adhesion forces between individual ligand-receptor pairs, Science, 264 (1994), 415-417.
[27] Sheng Zhong, Hui Li, Xin-Yong Chen, En-Hua Cao, Gang Jin, and Kun-sheng Hu, Different interactions between the two sides of purple membrane with atomic force microscope tip, Langmuir, 23 (2007), 4486-4493.
[28] M. Radmacher, M. Fritz, and P.K. Hansma, Imaging soft samples with the atomic force microscope: gelatin in water and propanol, Biophysical Journal, 69 (1995), 264-270.
[29] M. Radmacher, Studying the mechanics of cellular processes by atomic force microscopy, Methods in Cell Biology, 83 (2007), 347-372.
[30] S. Alexander, L. Hellemans, O. Marti, J. Schneir, V. Elings, P. K. Hansma, Matt Longmire, and John Gurley, An atomic-resolution atomic-force microscope implemented using an optical lever , Journal of Applied Physics, 65 (1989), 164-167.
[31] Eric M. Darling, Stefan Zauscher, Joel A. Block, and Farshid Guilak, A thin-layer model for viscoelastic, stress-relaxation testing of cells using atomic force microscopy: do cell properties reflect metastatic potential?, Biophysical Journal, 92 (2007), 1784-1791.
[32] A.C. Fischer Cripps, Introduction to contact mechanics, 2nd ed. (Springer, New York, 2007).
[33] Mei-Yi Lee, Cheng-Yang Chou, Ming-Jer Tang, and Meng-Ru Shen, Epithelial-mesenchymal transition in cervical cancer: correlation with tumor progression, epidermal growth factor receptor overexpression, and snail up-regulation, Clinical Cancer Research, 14 (2008), 4743-4750.
[34] Shin-ichi Aota, Toshihiko NagaiS, and Kenneth M. Yamada, Characterization of regions of fibronectin besides the arginine-glycine-aspartic acid sequence required for adhesive function of the cell-binding domain using site-directed mutagenesis, The Journal of Biological Chemistry, 266 (1991), 15938-15943.
[35] Paul A. DiMilla, Julie A. Stone, John A. Quinn, Steven M. Albelda, and Douglas A. Lauffenburger, Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength, The Journal of Cell Biology, 122 (1993), 729-737.
[36] Stephen P. Massia, Sekhar S. Rao, and Jeffrey A. Hubbell, Covalently immobilized laminin peptide Tyr-Ile-Gly-Ser-Arg (YIGSR) supports cell spreading and co-localization of the 67-kilodalton laminin receptor with alpha-actinin and vinculin, The Journal of Biological Chemistry, 268 (1993), 8053-8059.
[37] Charles R. ILL, and Erkki Ruoslahti, Association of thrombin-antithrombin III complex with vitronectin in serum, The Journal of Biological Chemistry, 260 (1985), 15610-15615.
[38] Jeffrey L. Hutter, and John Bechhoefer, Calibration of atomic force microscope tips, Review of Scientific Instruments, 64 (1993), 3342-3342.
[39] Christian Rotsch, Ken Jacobson, and Manfred Radmacher, Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by using atomic force microscopy, Proceedings of the National Academy of Sciences of the United States of America: PNAS, 96 (1999), 921-926.
[40] Christian Rotsch, and Manfred Radmacher, Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study, Biophysical Journal, 78 (2000), 520-535.
[41] Hisashi Haga, Shigeo Sasaki, Kazushige Kawabata, Etsuro Ito, Tatsuo Ushiki, and Takashi Sambongi, Elasticity mapping of living fibroblasts by AFM and immunofluorescence observation of the cytoskeleton, Ultramicroscopy, 82 (2000), 253-258.
[42] Heinrich Hertz, Ueber die Berührung fester elastischer Körper, Journal für die reine und angewandte Mathematik, 92 (1882), 156-171.
[43] Ian N. Sneddon, The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile, International Journal of Engineering Science, 3 (1965), 47-57.
[44] Kevin D. Costa, Single-cell elastography: Probing for disease with the atomic force microscope, Disease Marker, 19 (2003, 2004), 139-154.
[45] Eli Zamir, Ben-Zion Katz, Shin-ichi Aota, Kenneth M. Yamada, Benjamin Geiger, and Zvi Kam, Molecular diversity of cell-matrix adhesions, Journal of Cell Science, 112 (1999), 1655-1669.
[46] Lianne M. McHardy, Kaoru Warabi, Raymond J. Andersen, Calvin D. Roskelley, and Michel Roberge, Strongylophorine-26, a Rho-dependent inhibitor of tumor cell invasion that reduces actin stress fibers and induces nonpolarized lamellipodial extensions, Molecular Cancer Therapeutics, 4 (2005), 772-778.
校內:2013-08-31公開