簡易檢索 / 詳目顯示

研究生: 許梓賢
Hsu, Tzu-Hsien
論文名稱: 開發高效能串級結構染料敏化太陽能電池以提高光電轉換效率
Development of High Performances Tandem Structure Dye-sensitized Solar Cells to Improve Photoelectric Conversion Efficiency
指導教授: 李玉郎
Lee, Yuh-Lang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 149
中文關鍵詞: 串級電池對電極鈷錯合物穿透度室內光環境
外文關鍵詞: tandem cells, counter electrode, cobalt redox couple, transmittance, room light environments
相關次數: 點閱:28下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的主要目的是開發一個串級結構,以應用於室內光照射下的染料敏化太陽能電池。此結構是堆疊兩個獨立的電池(稱為頂部電池和底部電池)而形成具「上下層電池」之串級結構。在此一結構中,未被頂部電池吸收的入射光可以再次被下方的底部電池吸收和利用,提高電池的吸光能力。因為串聯電池的光吸收是由頂部和底部電池共同分擔,所以可用兩個較薄的光電極來替代一個較厚的電極,藉此來降低電荷在TiO2薄膜中的傳輸阻力。因此,串級結構不只可以增加光的捕獲能力,亦可降低電荷轉移能力,提升電池的效率。研究中,我們利用Pt做為對電極,Y123作為敏化劑,首先探討不同厚度的頂部電池和底部電池對整個電池效率的影響,再利用紫外光-可見光光譜儀(UV-Vis)來分析入射光在上下兩電池的吸收性及穿透性。實驗結果顯示,此一串級電池在2000 lux的光強下可以得到34%的光電轉換效率。若將對電極為PEDOT及共敏染料,則效率可再提升至36.3%。此一電池在25℃存放1200小時的測試之後,仍有極佳的光電轉換表現。除了室內光的探討外,本研究亦將此串級結構電池應用於太陽光照射環境。與獨立電池相比,此一串級電池可以將光電轉換效率由9.27%提升至11.31%。

    The main purpose of this study is to develop a tandem structure for application in dye-sensitized solar cells under indoor light illumination. This structure is to stack two separate cells (called the top cell and the bottom cell) to form a tandem structure with "upper and lower cells".
    In this structure, the incident light that is not absorbed by the top cell can be absorbed and utilized by the bottom cell below again, thereby improving the light absorption capability of the cell. Since the light absorption of the tandem cells is shared by the top and bottom cells, two thinner photoelectrodes can be used to replace one thicker electrode, thereby reducing the charge transport resistance in the TiO2 film. Therefore, the tandem structure can not only increase the light trapping ability, but also reduce the charge transfer ability and improve the efficiency of the cell. In the study, we used Platinum as the counter electrode and Y123 as the sensitizer. First, we explored the effect of different thicknesses of the top cell and bottom cell on the overall cell efficiency, and then used a UV-Vis spectrometer (UV-Vis) to analyze the incident light. The absorbency and penetration of the upper and lower batteries. The experimental results show that the tandem cell can achieve a photoelectric conversion efficiency of 34% under the light intensity of 2000 lux.
    If the counter electrode is replaced by PEDOT and co-sensitizer, the efficiency can be further increased to 36.3%. This cell still has excellent photoelectric conversion performance after being stored at 25℃ for 1200 hours.
    In addition to the discussion of indoor light, this study also applies the tandem structure cell to the sunlight irradiation environment. Compared with the stand-alone cell, this cascade of cells can increase the photoelectric conversion efficiency from 9.27% to 11.31%.

    摘要 I Extended abstract II 誌謝 XVI 目錄 XIX 表目錄 XXIII 圖目錄 XXV 第 1 章 緒論 1 1-1前言 1 1-2研究目的與動機 3 第 2 章 實驗原理與文獻回顧 5 2-1 染料敏化太陽能電池介紹 5 2-1-1 染料敏化太陽能電池之工作原理 6 2-1-2 電子在染料敏化太陽能電池中的傳輸路徑 7 2-2 染料敏化太陽能電池之結構介紹 10 2-2-1 透明導電基板 10 2-2-2 氧化物半導體 12 2-2-3 光敏化劑 14 2-2-3-1 半導體敏化劑 15 2-2-3-2 釕金屬錯合物染料 16 2-2-3-3 紫質染料 19 2-2-3-4 純有機染料 20 2-2-4 電解質 24 2-2-4-1 碘電解質 25 2-2-4-2 鈷電解質 26 2-2-5 對電極 30 2-3 文獻回顧 34 2-3-1 染料敏化太陽能電池於室內光下之研究 34 2-3-2 鈷錯合氧化還原對於室內光環境下應用之可行性 38 2-3-3 串級結構之染料敏化太陽能電池 39 2-3-4 染料敏化太陽能電池之對電極材料文獻回顧 43 2-3-5 電子施體(Tris(4-methoxyphenyl)amine, TPAA) 44 第 3 章 實驗部份 46 3-1 實驗藥品與材料 46 3-2 實驗儀器與分析原理 48 3-2-1 高解析場發射掃描式電子顯微鏡 48 3-2-2 太陽光模擬器 49 3-2-3 室內光量測系統 54 3-2-4 入射光子轉換效率測量系統 56 3-2-5 電化學交流阻抗分析儀 58 3-2-6 金屬濺鍍機 64 3-2-7 紫外光-可見光光譜儀 66 3-2-8 一般儀器介紹 68 3-3 實驗流程 70 3-3-1 二氧化鈦薄膜製備 70 3-3-2 光電極敏化流程 71 3-3-3 電解質製備 72 3-3-4 白金對電極製備 73 3-3-5 導電高分子PEDOT對電極製備 73 3-3-6 染料敏化太陽能電池組裝 74 第 4 章 結果與討論 76 4-1 室外串級結構染敏電池之探討 78 4-1-1 光電極薄膜結構 78 4-1-1-1 在標準光源下單電池之效能表現 79 4-1-1-2 在標準光源下串級電池之效能表現 84 4-1-1-3 在標準光源下串級電池的下層電池效能表現 86 4-1-2 電子施體TPAA於電解質之效應 88 4-1-2-1添加TPAA之單電池效能表現 91 4-1-2-2 添加TPAA之串級電池效能表現 94 4-1-2-3 標準光源下元件之穩定性測試 96 4-1-3 PEDOT對電極與白金對電極比較 97 4-1-3-1在標準光源下PEDOT對電極之電化學阻抗分析 99 4-1-3-2在標準光下PEDOT對電極之效能表現 103 4-2 室內光串級染敏電池之探討 105 4-2-1在室內光下單電池之效能表現 105 4-2-2在室內光下串級電池之效能表現 108 4-2-3在室內光下串級電池之電化學阻抗分析 111 4-2-4不同光強下串級電池效能變化 113 4-2-5雙染料共敏化 116 4-2-6電解質之電化學特性分析 121 4-2-7在室內光下PEDOT對電極之效能表現 125 4-2-8在室內光下PEDOT對電極之穿透度及電化學阻抗分析 126 4-2-9共敏劑PEDOT對電極 128 4-2-10低光元件之穩定性測試 131 第 5 章 結論與建議 132 5-1 結論 132 5-2 未來工作與建議 138 第 6 章 參考文獻 140

    [1] H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, "Dye Sensitized Zinc Oxide: Aqueous Electrolyte: Platinum Photocell," Nature, 261, 402-403 (1976).
    [2] B. O’Regan and M. Grätzel, "A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Film," Nature, 353, 737-740 (1991).
    [3] M. Grätzel, "Photoelectrochemical Cells," Nature, 414, 338-344 (2001).
    [4] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, "Dye-Sensitized Solar Cells," Chem. Rev., 110, 6595-6663 (2010).
    [5] M. Grätzel, "Conversion of Sunlight to Electric Power by Nanocrystalline Dye-Sensitized Solar Cells," J. Photochem. Photobiol. A, 164, 3-14 (2004).
    [6] B. Wang and L. L. Kerr, "Dye Sensitized Solar Cells on Paper Substrates," Sol. Energy Mater Sol. Cells, 95, 2531-2535 (2011).
    [7] H. C. Weerasinghe, P. M. Sirimanne, G. V. Franks, G. P. Simon, and Y. B. Cheng, "Low Temperature Chemically Sintered Nano-Crystalline TiO2 Electrodes for Flexible Dye-Sensitized Solar Cells," J. Photochem. Photobiol. A, 213, 30-36 (2010).
    [8] Y.-Y. Kuo and C.-H. Chien, "Sinter-Free Ttransferring of Anodized TiO2 Nanotube-Array onto a Flexible and Transparent Sheet for Dye-Sensitized Solar Cells," Electrochim. Acta, 91, 337-343 (2013).
    [9] S. Ito, N.-L. C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, P. Péchy, M. K. Nazeeruddin, and M. Grätzel, "High-Efficiency (7.2%) Flexible Dye-Sensitized Solar Cells with Ti-Metal Substrate for Nanocrystalline-TiO2 Photoanode," ChemComm, 4004-4006 (2006).
    [10] C.-H. Lee, W.-H. Chiu, K.-M. Lee, W.-F. Hsieh, and J.-M. Wu, "Improved Performance of Flexible Dye-Sensitized Solar Cells by Introducing an Interfacial Layer on Ti Substrates," J. Mater. Chem., 21, 5114-5119 (2011).
    [11] K. Tennakone, G. R. R. A. Kumara, I. R. M. Kottegoda, and V. P. S. Perera, "An Efficient Dye-Sensitized Photoelectrochemical Solar Cell Made from Oxides of Tin and Zinc," ChemComm, 15-16 (1999).
    [12] K. Keis, E. Magnusson, S.-E. Lindquist, and A. Hagfeldt, "A 5% Efficient Photoelectrochemical Solar Cell Based on Nanostructured ZnO Electrodes," Sol. Energy Mater Sol. Cells, 73, 51-58 (2002).
    [13] H. Rensmo, K. Keis, H. Lindström, S. Sö1dergren, A. Solbrand, A. Hagfeldt, S.-E. Lindquist, L. N. Wang and M. Muhammed, "High Light-to-Energy Conversion Efficiencies for Solar Cells Based on Nanostructured ZnO Electrodes," J. Phys. Chem. B, 101, 2598-2601 (1997).
    [14] X. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa, and C. A. Grimes, "Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis details and applications," Nano Lett., 8, 3781-3786 (2008).
    [15] O. K. Varghese, M. Paulose, and C. A. Grimes, "Long Vertically Aligned Titania Nanotubes on Transparent Conducting Oxide for Highly Efficient Solar Cells," Nat. Nanotechnol., 4, 592-597 (2009).
    [16] J. T. Jiu, S. Isoda, F. M. Wang, and M. Adachi, "Dye-Sensitized Solar Cells Based on a Single-Crystalline TiO2 Nanorod Film," J. Phys. Chem. B, 110, 2087-2092 (2006) .
    [17] L. Schmidt‐Mende, U. Bach, R. Humphry‐Baker, T. Horiuchi, H. Miura, S. Ito, S. Uchida, and M. Grätzel, "Organic Dye for Highly Efficient Solid‐State Dye‐Sensitized Solar Cells," Adv. Mater., 17, 813-815 (2005).
    [18] S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Péchy, and M. Grätzel, "Fabrication of Screen‐Printing Pastes from TiO2 Powders for Dye‐Sensitised Solar Cells," Prog Photovolt, 15, 603-612 (2007).
    [19] T. Miyasaka and Y. Kijitori, "Low-Temperature Fabrication of Dye-Sensitized Plastic Electrodes by Electrophoretic Preparation of Mesoporous TiO2 Layers," J. Electrochem. Soc., 151, A1767-A1773 (2004).
    [20] W. W. Yu and X. G. Peng, "Formation of High-Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers," Angew. Chem. Int. Ed. Engl., 41, 2368-2371 (2002).
    [21] A. J. Nozik, "Quantum Dot Solar Cells," Physica E Low Dimens. Syst. Nanostruct., 14, 115-120 (2002).
    [22] W. Shockley and H. J. Queisser, "Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells," J. Appl. Phys., 32, 510-519 (1961).
    [23] A. Hagfeldt and M. Grätzel, "Molecular Photovoltaics," Acc. Chem. Res., 33, 269-277 (2000).
    [24] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, and M. Grätzel, "Conversion of Light to Electricity by Cis-X2bis(2,2'-Bipyridyl-4,4'-Dicarboxylate)Ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, Cn-, and Scn-) on Nanocrystalline TiO2 Electrodes," J. Am. Chem. Soc., 115, 6382-6390 (1993).
    [25] M. K. Nazeeruddin, P. Pechy, and M. Grätzel, "Efficient Panchromatic Sensitization of Nanocrystalline TiO2 Films by a Black Dye Based on a Trithiocyanato-Ruthenium Complex," ChemComm, 1705-1706 (1997).
    [26] M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, and M. Grätzel, "Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells," J. Am. Chem. Soc., 123, 1613-1624 (2001).
    [27] M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, and M. Grätzel, "Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers," J. Am. Chem. Soc., 127, p. 16835-16847 (2005).
    [28] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Grätzel, "A stable Quasi-Solid-State Dye-Sensitized Solar Cell with an Amphiphilic Ruthenium Sensitizer and Polymer Gel Electrolyte," Nat. Mater., 2, 402-407 (2003).
    [29] Y. R. Liu, J. R. Jennings, Y. Huang, Q. Wang, S. M. Zakeeruddin, and M. Grätzel, "Cobalt Redox Mediators for Ruthenium-Based Dye-Sensitized Solar Cells: A Combined Impedance Spectroscopy and Near-IR Transmittance Study," J. Phys. Chem. C, 115, 18847-18855 (2011).
    [30] C.-T. Chen, M. Wang, J.-Y. Li, N. Pootrakulchote, L. Alibabaei, C. Ngoc-le, J.-D. Decoppet, J.-H, Tsai, C. Grätzel, C.-G. Wu, S. M. Zakeeruddin and M. Grätzel, "Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells, " ACS Nano, 3, 3103-3109 (2009).
    [31] Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang, and P. Wang, "High-Efficiency Dye-Sensitized Solar Cells: The Influence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States," ACS Nano, 4, 6032-6038 (2010).
    [32] T. Bessho, S. M. Zakeeruddin, C.-Y. Yeh, E. W.-G. Diau, and M. Grätzel, "Highly Efficient Mesoscopic Dye‐Sensitized Solar Cells Based on Donor–Acceptor‐Substituted Porphyrins," Angew. Chem. Int. Ed., 122, 6796-6799 (2010).
    [33] A. Yella, H.-W. Lee, H. N. Tsao, C. Y. Yi, A. K. Chandiran, M. K. Nazeeruddin, E.-W. G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, "Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency," Science, 334, 629-634, (2011).
    [34] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin, and M. Grätzel, "Dye-Sensitized Solar Cells with 13% Efficiency Achieved through the Molecular Engineering of Porphyrin Sensitizers," Nat. Chem., 6, 242-247 (2014).
    [35] S. Ferrere, A. Zaban, and B. A. Gregg, "Dye Sensitization of Nanocrystalline Tin Oxide by Perylene Derivatives," J. Phys. Chem. B, 101, 4490-4493 (1997).
    [36] N. J. Cherepy, G. P. Smestad, M. Grätzel, and J. Z. Zhang, "Ultrafast Electron Injection:  Implications for a Photoelectrochemical Cell Utilizing an Anthocyanin Dye-Sensitized TiO2 Nanocrystalline Electrode," J. Phys. Chem. B, 101, 9342-9351 (1997).
    [37] K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara, and H. Arakawa, "Highly Efficient Photon-to-Electron Conversion of Mercurochrome-sensitized Nanoporous ZnO Solar Cells," Chem. Lett. 29, 316-317 (2000).
    [38] A. C. Khazraji, S. Hotchandani, S. Das, and P. V. Kamat, "Controlling Dye (Merocyanine-540) Aggregation on Nanostructured TiO2 Films. an Organized Assembly Approach for Enhancing the Efficiency of Photosensitization," J. Phys. Chem. B, 103, 4693-4700 (1999).
    [39] K. Sayama, K. Hara, N. Mori, M. Satsuki, S. Suga, S. Tsukagoshi, Y. Abe, H. Sugihara, and H. Arakawa, "Photosensitization of a Porous TiO2 Electrode with Merocyanine Dyes Containing a Carboxyl Group and a Long Alkyl Chain," ChemComm, 1173-1174 (2000).
    [40] K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H. Arakawa, "A Coumarin-Derivative Dye Sensitized Nanocrystalline TiO2 Solar Cell Having a High Solar-Energy Conversion Efficiency Up to 5.6%," ChemComm, 569-570 (2001).
    [41] T. Horiuchi, H. Miura, and S. Uchida, "Highly-Efficient Metal-Free Organic Dyes for Dye-Sensitized Solar Cells," ChemComm, 3036-3037 (2003).
    [42] S. Ito, S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida and M. Grätzel, "High-Efficiency Organic-Dye-Sensitized Solar Cells Controlled by Nanocrystalline-TiO2 Electrode Thickness, " Adv. Mater., 18, 1202-1205 (2006).
    [43] S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Péchy, and M. Grätzel, "High-Conversion-Efficiency Organic Dye-Sensitized Solar Cells with a Novel Indoline Dye," ChemComm, 5194-5196 (2008).
    [44] G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu, and P. Wang, "High Efficiency and Stable Dye-Sensitized Solar Cells with an Organic Chromophore Featuring a Binary π-Conjugated Spacer," ChemComm, 2198-2200 (2009).
    [45] W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan, and P. Wang, "Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks," Chem. Mater., 22, 1915-1925 (2010).
    [46] L. Kavan, J.-H. Yum, M. K. Nazeeruddin and M. Grätzel, "Graphene Nanoplatelet Cathode for Co(III)/(II) Mediated Dye-Sensitized Solar Cells, " ACS Nano, 5, 9171-9178 (2011).
    [47] W. Xiang, W. Huang, U. Bach, and L. Spiccia, "Stable High Efficiency Dye-Sensitized Solar Cells Based on a Cobalt Polymer Gel Electrolyte," ChemComm, 49, 8997-8999 (2013).
    [48] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa, and M. Hanaya, "Highly-Efficient Dye-Sensitized Solar Cells with Collaborative Sensitization by Silyl-Anchor and Carboxy-Anchor Dyes," ChemComm, 51, 15894-15897 (2015).
    [49] G. Wolfbauer, A. M. Bond, J. C. Eklund, and D. R. MacFarlane, "A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells," Sol. Energy Mater Sol. Cells, 70, 85-101 (2001).
    [50] S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, "Role of Electrolytes on Charge Recombination in Dye-Sensitized TiO2 Solar Cell (1):  The Case of Solar Cells Using the I-/I3- Redox Couple," J. Phys. Chem. B, 109 3480-3487 (2005).
    [51] C. Zhang, Y. Huang, Z. Huo, S. Chen and S. Dai, "Photoelectrochemical Effects of Guanidinium Thiocyanate on Dye-Sensitized Solar Cell Performance and Stability," J. Phys. Chem. C, 113, 21779-21783 (2009).
    [52] T. W. Hamann, "The End of Iodide? Cobalt Complex Redox Shuttles in DSSCs," Dalton Trans., 41, 3111-3115 (2012).
    [53] Y.-L. Lee, C.-L. Chen, L.-W. Chong, C.-H. Chen, Y.-F. Liu, and C.-F. Chi, "A Platinum Counter Electrode with High Electrochemical Activity and High Transparency for Dye-Sensitized Solar Cells," Electrochem commun, 12, 1662-1665 (2010).
    [54] C. H. Yoon, R. Vittal, J. Lee, W.-S. Chae and K.-J. Kim, "Enhanced Performance of A Dye-Sensitized Solar Cell with An Electrodeposited-Platinum Counter Electrode," Electrochim. Acta, 53, 2890-2896 (2008).
    [55] L.-L. Li, C.-W. Chang, H.-H. Wu, J.-W. Shiu, P.-T. Wu, and E. W.-G. Diau, "Morphological Control of Platinum Nanostructures for Highly Efficient Dye-Sensitized Solar Cells," J. Mater. Chem., 22, 6267 (2012).
    [56] N. Papageorgiou, W. F. Maier, and M. Grätzel, "An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media," J. Electrochem. Soc., 144, 876-884 (1997)
    [57] E. Olsen, G. Hagen, and S. E. Lindquist, "Dissolution of Platinum in Methoxy Propionitrile Containing LiI/I2," Sol. Energy Mater Sol. Cells, 63, 267-273 (2000).
    [58] T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Péchy, and M. Grätzel, "Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes," J. Electrochem. Soc., 153, A2255-A2261 (2006).
    [59] K.-C. Huang, Y.-C. Wang, R.-X. Dong, W.-C. Tsai, K.-W. Tsai, C.-C. Wang, Y.-H. Chen, R. Vittal, J.-J. Lin, and K.-C. Ho, "A High Performance Dye-Sensitized Solar Cell with a Novel Nanocomposite Film of PtNP/MWCNT on the Counter Electrode," J. Mater. Chem., 20, 4067-4073 (2010).
    [60] L. Kavan, J. H. Yum, and M. Grätzel, "Optically Transparent Cathode for Dye-Sensitized Solar Cells Based on Graphene Nanoplatelets," Acs Nano, 5, 165-172 (2010).
    [61] J. M. Pringle, V. Armel, and D. R. MacFarlane, "Electrodeposited PEDOT-on-Plastic Cathodes for Dye-Sensitized Solar Cells," Chem. Commun., 46, 5367-5369 (2010).
    [62] Q. Tai, B. Chen, F. Guo, S. Xu, H. Hu, B. Sebo and X.-Z. Zhao, " In Situ Prepared Transparent Polyaniline Electrode and Its Application in Bifacial Dye-Sensitized Solar Cells," ACS Nano, 5, 3795-3799 (2011)
    [63] S. Ahmad, T. Bessho, F. Kessler, E. Baranoff, J. Frey, C. Yi, M. Grätzel and M. K. Nazeeruddin, "A New Generation of Platinum and Iodine Free Efficient Dye-Sensitized Solar Cells," Phys. Chem. Chem. Phys., 14, 10631-10639 (2012).
    [64] V. Annapureddy, H. Palaneedi, G.-T. Hwang, M. Peddigari, D.-Y. Jeong, W.-H. Yoon, K.-H. Kim and J. Ryu, "Magnetic Energy Harvesting with Magnetoelectrics: An Emerging Technology for Self-Powered Autonomous Systems," Sustain. Energy Fuels, 1, 2039-2052 (2017).
    [65] I. Mathews, P. J. King, F. Stafford, and R. Frizzell, "Performance of III-V Solar Cells as Indoor Light Energy Harvesters," IEEE J. Photovolt., 6, 230-235 (2016).
    [66] P. C. Yang, I. M. Chan, C. H. Lin, and Y. L. Chang, "Thin Film Solar Cells for Indoor Use," in IEEE 37th Photovoltaic Specialists Conference (PVSC), 696-698 (2011).
    [67] F. D. Rossi, T. Pontecorvo, and T. M. Brown, "Characterization of Photovoltaic Devices for Indoor Light Harvesting and Customization of Flexible Dye Solar Cells to Deliver Superior Efficiency under Artificial Lighting," Appl. Energy, 156, 413-422 (2015).
    [68] N. Sridhar and D. Freeman, "A Study of Dye Sensitized Solar Cells under Indoor and Low Level Outdoor Lighting: Comparison to Organic and Inorganic Thin Film Solar Cells and Methods to Address Maximum Power Point Tracking," in 26th European Photovoltaic Solar Energy Conference and Exhibition, 232-236 (2011).
    [69] M. Dürr, et al., "Tandem Dye-Sensitized Solar Cell for Improved Power Conversion Efficiencies," Applied Physics Letters, vol. 84, p. 3397, 2004.
    [70] M. Murayama and T. Mori, "Novel Tandem Cell Structure of Dye-sensitized Solar Cell for Improvement in Photocurrent," Thin Solid Films, vol. 516, pp. 2716-2722, 2008.
    [71] M. Murayama and T. Mori, "Dye-sensitized Solar Cell Using Novel Tandem Cell Structure," Journal of Physics D: Applied Physics, vol. 40, pp. 1664-1668, 2007.
    [72] F. Inakazu, et al., "Dye-Sensitized Solar Cells Consisting of Dye-bilayer Structure Stained with Two Dyes for Harvesting Light of Wide Range of Wavelength," Applied Physics Letters, vol. 93, p. 093304, 2008.
    [73] K. Uzaki, et al., "Tandem Dye-sensitized Solar Cells Consisting of Floating Electrode in One Cell," Journal of Photochemistry and Photobiology A: Chemistry, vol. 216, pp. 104-109, 2010.
    [74] M. Yanagida, et al., "Optimization of Tandem-structured Dye-sensitized Solar Cell," Solar Energy Materials and Solar Cells, vol. 94, pp. 297-302, 2010.
    [75] H. Michaels, M. Rinderle, R. Freitag, I. Bensperi, T. Edvinsson, R. Socher, A. Gagliardi and M. Freitag, " Dye-Sensitized Solar Cells under Ambient Light Powering Machine Learning: towards Autonomous Smart Sensors for the Internet of Things, " Chem. Sci., 11, 2895-2906 (2020).
    [76] T. Yamaguchi, et al., "Series-connected Tandem Dye-sensitized Solar Cell for Improving Efficiency to More Than 10%," Solar Energy Materials and Solar Cells, vol. 93, pp. 733-736, 2009.
    [77] A. Nattestad, et al., "Highly Efficient Photocathodes for Dye-sensitized Tandem Solar Cells," Nature materials, vol. 9, pp. 31-35, 2010.
    [78] M.-C. Tsai, C.-L. Wang, C.-W. Chang, C.-W. Hsu, Y.-H. Hsiao, C.-L. Liu, C.-C. Wang, S.-Y. Lina, and C.-Y. Lin, "A Large, Ultra-Black, Efficient and Cost-Effective Dye-Sensitized Solar Module Approaching 12% Overall Efficiency under 1000 Lux Indoor Light," J. Mater. Chem. A, 6, 1995-2003 (2018).
    [79] M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J. Hua, S. M. Zakeeruddin, J.-E. Moser, M. Grätzel, and A. Hagfeldt, "Dye-Sensitized Solar Cells for Efficient Power Generation under Ambient Lighting," Nat. Photonics, 11, 372-378 (2017).
    [80] Y. Cao, Y. Liu, S. M. M. Zakeeruddin, A. Hagfeldt, and M. Grätzel, "Direct Contact of Selective Charge Extraction Layers Enables High-Efficiency Molecular Photovoltaics," Joule, 2, 1108-1117 (2018).
    [81] C.-T. Li, Y.-L. Kuo, CH. P. Kumar, P.-T. Huang and J. T. Lin, " Tetraphenylethylene Tethered Phenothiazine-Based Double-Anchored Sensitizers for High Performance Dye-Sensitized Solar Cells, " J. Mater. Chem. A, 7, 23225-23233 (2019).
    [82] E. Tanaka, H. Michaels, M. Freitag and N. Robertson, " Synergy of Co-Sensitizers in a Copper Bipyridyl Redox System for Efficient and Cost-Effective Dye-Sensitized Solar Cells in Solar and Ambient Light, " J. Mater. Chem. A, 8, 1279-1287 (2020).
    [83] H. Michaels, M. Rinderle, R. Freitag, I. Bensperi, T. Edvinsson, R. Socher, A. Gagliardi and M. Freitag, " Dye-Sensitized Solar Cells under Ambient Light Powering Machine Learning: towards Autonomous Smart Sensors for the Internet of Things, " Chem. Sci., 11, 2895-2906 (2020).
    [84] P. Wang, S. M. Zakeeruddin, I. Exnar, and M. Grätzel, "High Efficiency Dye-Sensitized Nanocrystalline Solar Cells Based on Ionic Liquid Polymer Gel Electrolyte," Chem. Commun., 2972-2973 (2002).
    [85] M. B. Achari, V. Elumalai, N. Vlachopoulos, M. Safdari, J. J. Gao, J. M. Gardner, and L. Kloo, "A Quasi-Liquid Polymer-Based Cobalt Redox Mediator Electrolyte for Dye-Sensitized Solar Cells," Phys. Chem. Chem. Phys., 15, 17419-17425 (2013).
    [86] D. K. Lee, K.-S. Ahn, S. Thogiti, and J. H. Kim, "Mass Transport Effect on the Photovoltaic Performance of Ruthenium-Based Quasi-Solid Dye Sensitized Solar Cells Using Cobalt Based Redox Couples," Dyes Pigm., 117, 83-91 (2015).
    [87] E. J. Johansson, L. Yang, E. Gabrielsson, P. W. Lohse, G. Boschloo, L. Sun and A. Hagfeld, "Combining a Small Hole-Conductor Molecule for Efficient Dye Regeneration and a Hole-Conducting Polymer in a Solid-State Dye-Sensitized Solar Cell, " J. Phys. Chem. C, 116, 18070-18078 (2012).
    [88] Y. Hao, W. Yang, L. Zhang, R. Jiang, E. Mijangos, Y. Saygili, L. Hammarström, A. Hagfeldt and G. Boschloo, "A Small Electron Donor in Cobalt Complex Electrolyte Significantly Improves Efficiency in Dye-Sensitized Solar Cells, " Nat. Commun., 7, 13934 (2016).
    [89] Y. Hao, W. Yang, M. Kaelsson, J. Cong, S. Wang, X. Li, B. Xu, J. Hua, L. Kloo,and G. Boschloo, "Efficient Dye-Sensitized Solar Cells with Voltages Exceeding 1 V through Exploring Tris(4-alkoxyphenyl)amine Mediators in Combination with the Tris(bipyridine) Cobalt Redox System, " ACS Energy Lett., 3, 1929-1937 (2018).
    [90] H. Arakawa, T. Yamaguchi, T. Sutou, Y. Koishi, N. Tobe, D. Matsumoto, and T. Nagai, "Efficient Dye-Sensitized Solar Cell Sub-Modules," Curr Appl Phys, 10, S157-S160 (2010).
    [91] Y. Liu, H. Wang, H. Shen, and W. Chen, "The 3-Dimensional Dye-Sensitized Solar Cell and Module Based on All Titanium Substrates," Appl. Energy, 87, 436-441 (2010).
    [92] W. J. Lee, E. Ramasamy, and D. Y. Lee, "Effect of Electrode Geometry on The Photovoltaic Performance of Dye-sensitized Solar Cells," Sol. Energy Mater Sol. Cells, 93, 1448-1451 (2009).
    [93] Y.-D. Zhang, X.-M. Huang, K.-Y. Gao, Y.-Y. Yang, Y.-H. Luo, D.-M. Li and Q.-B. Meng, "How to Design Dye-Sensitized Solar Cell Modules," Sol. Energy Mater Sol. Cells, 95, 2564-2569 (2011).
    [94] T.-C. Wei, Y.-H. Chang, S.-P. Feng, and H.-H. Chen, "A Semi-Experimental Method for Fast Evaluation of The Performance of Grid-Type Dye-Sensitized Solar Module," Int. J. Electrochem. Sci., 8, 9256-9263 (2013).
    [95] X. Huang, Y. Shang, H. Sun, D. Li, Y. Luo and Q. Meng, "A New Figure of Merit for Qualifying the Fluorine-Doped Tin Oxide Glass Used in Dye-Sensitized Solar Cells," J. Renew. Sustain. Energy, 1, 063107 (2009).
    [96] R. Sastrawan, J. Beier, U. Belledin, S. Hemming, A. Hinsch, R. Kern, C. Vetter, F. M. Prtrat, A. Prodi-Schwab, P. Lechner and W. Hoffmann, "New Interdigital Design for Large Area Dye Solar Modules Using A Lead‐Free Glass Frit Sealing," Prog Photovolt, 14, 697-709 (2006).
    [97] R. Komiya, A. Fukui, N. Murofushi, N. Koide, R. Yamanaka, and H. Katayama, "Improvement of The Conversion Efficiency of A Monolithic Type Dye-Sensitized Solar Cell Module," in Technical Digest, 21st International Photovoltaic Science and Engineering Conference, 2011, 2C-5O-08.
    [98] A. Hauch and A. Georg, "Diffusion in The Electrolyte and Charge-Transfer Reaction at The Platinum Electrode in Dye-Sensitized Solar Cells," Electrochim. Acta, 46, 3457-3466 (2001).
    [99] M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata and S. Isoda, "Determination of Parameters of Electron Transport in Dye-Sensitized Solar Cells Using Electrochemical Impedance Spectroscopy, "J. Phys. Chem. B, 110, 13872-13880 (2006).

    下載圖示 校內:2024-08-31公開
    校外:2024-08-31公開
    QR CODE