簡易檢索 / 詳目顯示

研究生: 劉子豪
Liu, Tzu-Hao
論文名稱: 生物材料應用於有機薄膜電晶體之研製
Investigation and Fabrication of Organic Thin-Film Transistor by Utilizing Bio-Material
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 93
中文關鍵詞: 有機薄膜電晶體
外文關鍵詞: Organic, Thin Film Transistor
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之主要目的是探討具生物材料之薄膜電晶體。元件結構以閘極電極/ 絕緣層/ 通道層/ 源和汲極電極為基礎。絕緣層材料以蜂蜜材料為主。主要探討研究蜂蜜之固化條件以及於不同固化條件中所獲得之蜂蜜薄膜對薄膜電晶體特性之影響。最後尋找元件之最佳條件。
    蜂蜜薄膜之固化狀態可由烘烤溫度、烘烤時間來決定。另外,因為蜂蜜的主要成分為碳水化合物,所以蜂蜜薄膜之保存環境是非常重要。我們藉由電荷耦合元件相機照片、漏電流量測和電容-電壓特性曲線量測發現到在90 ℃30分鐘烘烤之蜂蜜薄膜展現出較佳的狀態。蜂蜜薄膜的漏電流和阻抗分別為4.43 μA/cm2和1.86×〖10〗^4 MΩ /cm2。介電係數約為22,而在薄膜電晶體的研究裡,底部閘極薄膜電晶體結構被採用。元件皆製作於銦錫氧化物玻璃基板上。300奈米厚的銦錫氧化物薄膜作為閘極電極。蜂蜜介電層、五環苯通道層以及源極和汲極金電極之厚度分別被控制於1500奈米、60奈米和150奈米。通道長寬分別為100微米和500微米。在這研究裡能可發現薄膜電晶體之性能能藉由水和蜂蜜的混和來改善。使用1:2的蜂蜜對水之體積比時,薄膜電晶體有較好的電特性。以蜂蜜為基礎的薄膜電晶體展現出傳統P通道電晶體之電特性。元件具有場效遷移率為0.01 cm2 /V× s、電流開關比為5.75 × 103、臨界電壓為1伏特以及次臨界斜率為10 V/decade。根據原子力顯微鏡量測的結果,五環苯薄膜展現較好的晶格特性,其表面粗糙度均方根值為30奈米同時顆粒大小為450奈米。元件於充滿氮氣之手套箱內保存2個月之後仍然可以展現出較好的電特性。在最後的研究裡,傅里葉轉換紅外光譜儀顯示在1060和3400 cm-1的最強振動分別為碳氧基和氫氧基。

    The main purpose of this thesis is to investigate the thin film transistors (TFTs) with biomaterial. The structure of gate electrode/ insulating layer/ channel layer/ source and drain electrodes is applied in this study. The honey is used as the insulator layer. Moreover, the solidification condition of honey and the influence of honey film formed by different solidification conditions on the characteristics of TFTs are investigated. Finally, the optimizing fabrication condition of the devices is found.
    The solidifying states of honey film are determined by the baking temperature, and baking time. Because of the main component of honey to be carbohydrate, the storage environment is very important. It can be observed by charge-coupled device (CCD) camera pictures, leakage current measurement and capacitance-voltage (C-V) measurement that the honey film baked at 90 ℃ for 30 mins shows the better quality. The leakage current and resistance are 4.43 μA/cm2 and 1.86×〖10〗^4 MΩ /cm2, respectively. The dielectric constant is about 22. In the study of TFTs, the bottom gate TFTs is adopted. The devices are fabricated on indium tin oxide (ITO) glass substrate. The 300 nm-thick ITO thin film is used as gate electrode. The thickness of honey dielectric, pentacene channel and source and drain gold electrodes are controlled at 1500, 60 and 150 nm, respectively. It is also clearly observed that the performance of TFTs is improved by mixing water and honey. The TFTs using the solution of mixing honey and water in the volume ratio of 1:2 have better the electrical characteristics. The honey-based TFTs perform the electrical characteristics of conventional p-channel transistors. The properties of the devices had the field effect mobility of 0.01 cm2 /V× s, on / off current ratio (Ion/off) of 5.75 × 103, threshold voltage (VTH) of 1 V, and sub-threshold slope (S. S.)of 10 V/decade. According to the results of atomic force microscopy (AFM) measurement, the pentacene film on honey dielectric layer display good crystal quality. Its root mean square roughness (Rrms) and grain size are about 30 nm and 450 nm, respectively. Good electrical characteristics can also be observed after the fabricated devices stored in nitrogen-filled glove box for 2 months. At last of this study, the chemical functional group of honey is also investigated by Fourier Transform infrared (FTIR) spectroscopy. The strongest vibration happened at 1060 and 3400 cm-1 that indicates the existence of C-O group and –OH group, respectively.

    Abstract (in Chinese)........I Abstract (in English).........II Acknowledgement.........IV Content.........V Table Captions.........VIII Figure Captions........IX Chapter 1. Introduction 1-1 The Review of Organic Thin Film Transistors.....1 1-2 Motivation..........4 Chapter 2. Principles of Organic Thin Film Transistor 2-1 Organic Semiconductor Materials.......10 2-2 Structure and Operation Mode.......12 2-3 Important Parameters........13 2-3-1 Field Effect Mobility (μeff)........14 2-3-2 Threshold Voltage (VTH).......15 2-3-3 Sub-Threshold Slope (S. S.)......17 2-3-4 Current ON/ OFF Ratio (ION / IOFF)......18 2-3-5 Hysteresis Width (∆VTH)........19 Chapter 3. Honey Based Organic Thin Film Transistors with Pentacene as Channel Layer (P-Type) 3-1 Organic Thin Film Transistor by Using the Variation of Spin–Coating Condition of Honey Thin Film 3-1-1 Experimental Details........24 3-1-2 Results and Discussion 3-1-2-1 The Solidification Degree and Surface Morphology of the Honey Thin Film.......26 3-1-2-2 The Electrical Property of the Organic Thin Film Transistors........27 3-2 Organic Thin Film Transistors Using Different Ratio of Honey Mixing with Water...........30 3-2-1 Experimental Details........30 3-2-2 Results and Discussion 3-2-2-1 The Surface Morphology and Leakage Current of the Honey Thin Film........32 3-2-2-2 The Surface Morphology and XRD Spectra of the Pentacene Thin Film........33 3-2-2-3 The Electrical and Hysteresis Characteristics and Stability of the Organic Thin Film Transistors....34 3-3 Comparison between OTFTs with the Honey and OTFTs with PMMA..37 3-4 Summary..........38 Chapter 4. Honey Based Organic Thin Film Transistors with poly 3-hexylthiophene (P3HT) as Channel Layer (P-Type) 4-1 Experimental Details.........57 4-2 Results and Discussions........58 Chapter 5. Conclusions and Future Prospects 5-1 Conclusions.........63 5-2 Future Prospects.........64 5-2-1 Memory Application.......64 5-2-2 Deposition of Passivation Layer.......66 5-2-3 Patterning the P3HT Channel Layer by Contact Printing...67 Reference............84

    Chapter 1
    [1] D. F. Barbe, and C. R. Westgate, “Surface state parameters of metal-free phthalocyanine single crystals,” J. Phys. Chem. Solids, vol. 31, pp. 2679-2687, December 1970.
    [2] M. L. Petrova, and L. D. Rozenshtein, “Field effect in organic semiconductors,” Fiz. Tverd. Tela (Sov. Phys.-Solid State), vol.12, pp. 961, 1970.
    [3] F. Ebisawa, T. Kurokawa, and S. Nara, “Electrical properties of polyacetylene/polysiloxane interface,” J. Appl. Phys., vol. 54, pp. 3255-3259, June 1983.
    [4] C. D. Dimitrakopoulos, and D. J. Mascaro, “Organic thin-film transistors: a review of recent advances,” IBM J. RES. & DEV., vol. 45, pp. 11-27, January 2001.
    [5] Y. Roichman and N. Tessler, “Analysis of polymer field field effect transistor,” Mat. Res. Soc. Symp. Proc. vol. 665, pp. C. 7. 4. (1-6), 2001.
    [6] M. M. Voigt, A. Guite, D. Y. Chung, Rizwan U. A. Khan, A. J. Campbell, Donal D. C. Bradley, F. Meng, J. H. G. Steinke, S. Tierney, I. McCulloch, H. Penxten, L.Lutsen, O. Douheret, J. Manca, U. Brokmann, K. Sonnichsen, D. Hulsenberg, W. Bock, C. Barron, N. Blanckaert, Simon Springer, J. Grupp, and Alan Mosley, “Polymer field-effect transistors fabricated by the sequential gravure printing of polythiophene, two insulator layers, and a metal ink gate,” Adv. Funct. Mater. , vol. 19, pp. 1–8, 2009.
    [7] G. Horowitz, “Organic Field-Effect Transistors,” Adv. Mater., vol. 5, pp. 365-377, 1998.
    [8] H. Klauk, M. Halik, U. Zschieschang, G. Schmid and W. Radik, “Highmobility polymer gate dielectric pentacene thin film transistors,” J. Appl. Phys., vol. 92, pp. 5259-63, Nov., 2002.
    [9] H. Klauk, U. Zschieschang, Frederik Ante, T. Yamamoto, Kazuo Takimiya,H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya and K. Kern, “Flexible low-voltage organic transistors and circuits based on a highmobility organic semiconductor with Good air Stability,” Adv. Mater., 22, pp. 982–985, 2010.
    [10] H. Klauk, U. Zschieschang, and M. Halik, “Low-voltage organic thinfilm transistors with large transconductance,” J. Appl. Phys., vol. 102, pp. 074514-1–074514-7, Oct. 2007.
    [11] H. Klauk, U. Zschieschang, Jens Pflaum and M. Halik, “Ultralow-power organic complementary circuits,” Nature, vol.445, Feb. 2007.
    [12] Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, “Stacked pentacene layer organic thin-film transistors with improved characteristics,” IEEE Electron Device Lett., vol. 18, pp. 606-608, December 1997.
    [13] M. Shtein, J. Mapel, J. B. Benziger, and S. R. Forrest, “Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors,” Appl. Phys. Lett., vol. 81, pp. 268-270, July 2002.
    [14] D. Knipp, R. A. Street, A. Völkel, and J. Ho, “Pentacene thin film transistor on inorganic dielectrics: Morphology, structural, properties, and electronic transport,” J. Appl. Phys., vol. 93, pp. 347-355, January 2003.
    [15] Y.-Y. Lin, D. J. Gundlach, S. F. Nelson, and Th. N. Jackson, “Pentacene-based organic thin film transistors,” IEEE Trans. Electron Devices, vol. 44, pp. 1325-1331, August 1997.
    [16] H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated Optoelectronic Devices Based on Conjugated Polymers,” Science, vol. 280, pp. 1741-1744, June 1998.
    [17] H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated, high-mobility polymer field-effect transistors driving polymer light-emitting diodes,” Synth. Met., vol. 102, pp. 857-860, June 1999.
    [18] A. Salleo, M. L. Chabinyc, M. S. Yang, and R. A. Street, “Polymer thin-film transistors with chemically modified dielectric interfaces,” Appl. Phys. Lett., vol. 81, pp. 4383-4385, December 2002.
    [19] A. Wang, I. Kymissis, V. Bulović, and A. I. Akinwande, “Tunable threshold voltage and flatband voltage in pentacene field effect transistors,” Appl. Phys. Lett., vol. 89, pp. 112109-112111, September 2006.
    [20] S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H. Shimotani, N. Yoshimoto, S. Ogawa, and Y. Iwasa, “Control of carrier density by self-assembled monolayers in organic field-effect transistors,” Nat. Mater., vol. 3, pp. 317-322, May 2004.
    [21] K. P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D. J. Gundlach, B. Batlogg, A. N. Rashid, and G. Schitter, “Threshold voltage shift in organic field effect transistors by dipole monolayers on the gate insulator,” J. Appl. Phys., vol. 96, pp. 6431-6438, December 2004.
    [22] J. Takeya, T. Nishikawa, T. Takenobu, S. Kobayashi, Y. Iwasa, T. Mitani, C. Goldmann, C. Krellner, and B. Batlogg, “Effects of polarized organosilane self-assembled monolayers on organic single-crystal field-effect transistors,” Appl. Phys. Lett., vol. 85, pp. 5078-5080, November 2004.
    [23] S. Scheinert, G. Paasch, M. Schrödner, H.-K. Roth, S. Sensfuß, and Th. Doll, “Subthreshold characteristics of field effect transistors based on poly(3 dodecylthiophene) and an organic insulator,” J. Appl. Phys., vol. 92, pp. 330-337, July 2002.
    [24] S. Scheinert, G. Paasch, and Th. Doll, “The influence of bulk traps on the subthreshold characteristics of an organic field effect transistor,” Synth. Met., vol. 139, pp. 233-237, September 2003.
    [25] T. Lindner, G. Paasch, and S. Scheinert, “Influence of distributed trap states on the characteristics of top and bottom contact organic field-effect transistors,” J. Mater. Res., vol. 19, pp. 2014-2027, July 2004.
    [26] K. P. Pernstich, D. Oberhoff, C. Goldmann, and B. Batlogg, “Modeling the water related trap state created in pentacene transistors,” Appl. Phys. Lett., vol. 89, pp. 213509-213511, November 2006.
    [27] S. Scheinert and G. Paasch, “Fabrication and analysis of polymer field-effect transistor,” Phys. Status Solidi A, vol. 201, pp. 1263-1301, May 2004.
    [28] D. Oberhoff, K. P. Pernstich, D. J. Gundlach, and B. Batlogg, “Arbitrary Density of States in Organic Thin-Film Field-Effect Transistor Model and Application to Pentacene Devices,” IEEE Trans. Electron Devices, vol. 54, pp. 17-25, January 2007.
    [29] C. D. Sheraw, J. A. Nichols, D. J. Gundlach, J. R. Huang, C. C. Kuo, H. Klauk, T. N. Jackson, M. G Kane, J. Campi, F. P. Cuomo, B. K. Greening, “Fast organic circuits on flexible polymeric substrates,” Tech. Dig. - Int. Electron Devices Meet., pp. 619, 2000.
    [30] C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Frand, and J. West, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates,” Appl. Phys. Lett., vol. 80, pp. 1088-1090, February2002.
    [31] D. J. Gundlach, H. Klauk, C. D. Sheraw, C. C. Kuo, J. R. Huang, and T. N. Jackson, “High-mobility, low voltage organic thin film transistors,” Tech. Dig. - Int. Electron Devices Meet., pp. 111, 1999.
    [32] B. K. Crone, A. Dodabalapur, R. Sarpeshkar, R. W. Filas, Y. Y. Lin, Z. Bao, J. H. O’Neill, W. Li, and H. E. Katz, “Design and fabrication of organic complementary circuits,” J. Appl. Phys., vol. 89, pp. 5125-5132, May 2001.
    [33] H. E. A. Huitema, G. H. Gelinck, J. B. P. H. van der Putten, K. E. Kuijk, K. M. Hart, E. Cantatore, and D. M. de Leeuw, “Active-Matrix Displays Driven by Solution-Processed Polymeric Transistors,” Adv. Mater., vol. 14, pp. 1201-1204, August 2001.
    [34] D. Knipp, R. A. Street, B. S. Krusor, and R. B. Apte, “Influence of the gate dielectric on the morphological and electronic structure of pentacene films for transistor applications,” Proceedings of the Fall 2001 Materials Research Society Meeting, p. 553, 2001.
    [35] J. H. Schőn and C. Kloc, “Fast organic electronic circuits based on ambipolar pentacene field-effect transistors,” Appl. Phys. Lett., vol. 79, pp. 4043-4044, December 2001.
    [36] Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, “Stacked pentacene layer organic thin-film transistors with improved characteristics,” IEEE Electron Device Lett., vol. 18, pp. 606-608, December 1997.
    [37] G. H. Gelinck, T. C. T. Geuns, and D. M. de Leeuw, “High-performance all-polymer integrated circuits,” Appl. Phys. Lett., vol. 77, pp. 1487-1489, September2000.
    [38] P. Mach, S. J. Rodriguez, R. Nortrup, P. Wiltzius, and J. A. Rogers, “Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors,” Appl. Phys. Lett., vol. 78, pp. 3592-3594, June 2001.
    [39] J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, “Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks,” Proc. Natl. Acad. Sci. U.S.A., vol. 98, pp. 4835-4840, April 2001.
    [40] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, “High-Resolution Inkjet Printing of All-Polymer Transistor Circuits,” Science, vol. 290, pp. 2123-2126, December 2000.
    [41] T. Kawase, H. Sirringhaus, R. H. Friend, and T. Shimoda, “Inkjet Printed Via-Hole Interconnections and Resistors for All-Polymer Transistor Circuits,” Adv. Mater., vol. 13, pp. 1601-1605, October 2001.
    [42] C. D. Sheraw, D. J. Gundlach, and T. N. Jackson, “Spin-On Polymer Gate Dielectric for High Performance Organic Thin Film Transistors,” Mater. Res. Soc. Symp. Proc., vol. 558, pp. 403, Spring 1999.
    [43] http://nanomarkets.net/
    [44]http://www.idtechex.com/research/reports/printed-and-thin-film-transistors-tft-and-memory-2012-2022-forecasts-technologies-players-000306.asp
    [45] W. Y. Chou, C. W. Kuo, H. L. Cheng, and Y. R. Chen, “Effect of surface free energy in gate dielectric in pentacene thin-film transistors,” Appl. Phys. Lett., 89 (2006) 112126.
    [46]T. S. Huang, Y. K. Su, and P. C Wang, “Poly (methyl methacrylate) dielectric material applied in organic thin film transistors,” Jpn. J. Appl. Phys., Vol. 47, No. 4 (2008)
    [47]T. S. Huang, Y. K. Su, and P. C. Wang, “Study of organic thin film transistor with polymethylmethacrylate as a dielectric layer,” Appl. Phys. Lett., 91, 092116, 2007
    [48](a)http://www.wired.com/gadgetlab/2008/10/post-2/, (b)http://news.cnyes.com/Content/20121121/KFNYKMAKZSBYO.shtml, (c)http://isfed.itri.org.tw/2007/files/presentation/SI-1_Wolfgang_Mildner_new.pdf, (d)http://uiui.mmdays.com/, (e)http://enjoyrfid.blogspot.tw/2008/12/rfid_07.html, (f)http://www.eetimes.com/electronics-news/4213472/CPU-DRAM-ride-organic-substrates-at-ISSCC
    [49](a)http://www.bjxhzy.com/1/21.html, (b)http://www.3lian.com/vector/19/24501.html, (c)http://inhabitat.com/bmws-i8-hybrid-electric-sports-car-saves-the-world-in-mission-impossible-ghost-protocol/, (d)http://www.shin7189.com/?product=peace-ii, (e)http://www.eetimes.com/document.asp?doc_id=1258762
    [50] http://nanomarkets.net/
    [51] http://en.wikipedia.org/wiki/Honey

    Chapter 2
    [1] M. J. Deen and M. Kazemeini, “Photosensitive polymer thin-film FETs based on poly (3-octylthiophene)P3OT,” Proc. IEEE, vol. 93, pp. 1312–1320, Jul. 2005.
    [2] J.F. Chang, B. Sun, D.W. Breiby, M.M. Nielsen, T.I. So‥ lling, M. Giles, I. McCulloch, H. Sirringhaus, “Enhanced Mobility of Poly(3-hexylthiophene) Transistors by Spin-Coating from High-Boiling-Point Solvents,” Chem. Mater., 16, 4772, 2004.
    [3] K. Reynolds, S. Burns, M. Banach, T. Brown, K. Chalmers, N. Cousins, L. Creswell, M. Etchells, C. Hayton, K. Jacobs, A. Menon, C. Ramsdale,W. Reeves, J. Watts, T. von Werne, J. Mills, C. Curling, H. Sirringhaus, K. Amundson, M.D. McCreary, “High-performance OTFT and its application,” Proceedings of the 11th International Display Workshops (IDW ’04), p. 367., 2004
    [4] K.E. Paul, W.S. Wong, S.E. Ready, R.A. Street, “Additive jet printing of polymer thin-film transistors,” Appl. Phys. Lett., 83, 2070, 2003
    [5] J. Jang, S.H. Han, “Lifetime of organic thin-film transistors with organic passivation layers,” Current Applied Physics, 6S1, e17–e21, 2006
    [6] Sirringhaus, H.; Brown, P. J.; Friend, R. H.; Nielsen, M. M.; Bechgaard, K.; Langeveld-Voss, B. M. W.; Spiering, A. J. H.; Janssen, R. A. J.; Meijer, E. W.; Herwig, P.; De Leeuw, D. M., “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature (London) 401, 685, 1999
    [7] Kline, R. J.; McGehee, M. D.; Kadnikova, E. N.; Liu, J.; Frechet, J. M. J., “Controlling the field‐effect mobility of regioregular polythiophene by changing the molecular weight,” Adv. Mater. 15, 1519, 2003
    [8] Bao, Z.; Dodabalapur, A.; Lovinger, A. J., “Soluble and processable regioregular poly (3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility,” Appl. Phys. Lett. 69, 4108, 1996
    [9] Sirringhaus, H.; Tessler, N.; Friend, R. H., “Integrated optoelectronic devices based on conjugated polymers,” Science 280, 1741, 1998
    [10] Wang, G.; Swensen, J.; Moses, D.; Heeger, A. J., “Increased mobility from regioregular poly (3-hexylthiophene) field-effect transistors,” J. Appl. Phys. 93, 6137, 2003
    [11] J. F. Chang, Baoquan Sun, Dag W. Breiby, Martin M. Nielsen, Theis I. So¨lling, Mark Giles, Iain McCulloch, and Henning Sirringhaus, “Enhanced Mobility of Poly(3-hexylthiophene) Transistors by Spin-Coating from High-Boiling-Point Solvents”, Chem. Mater. 16, 4772-4776, 2004
    [12] G. Horowitz, “Organic Field-Effect Transistor,” Adv. Mater., vol. 10, pp. 365-377, January 1998.
    [13] C. D. Dimitrakopoulos, P. R. L. Malenfant, “Organic Thin-Film Transistors for Large Area Electronics,” Adv. Mater., vol. 14, pp. 99-117, January 2002.
    [14] A. C. Mayer, A. Kazimirov, G. G. Malliaras, “Dynamics of Bimodal Growth in Pentacene Thin Films,” Phys. Rev. Lett., vol. 97, pp. 105503-105506, September 2006.
    [15] H. L. Cheng, W. Y. Chou, C. W. Kuo, F. C. Tang, and Y. W. Wang, “Electric field-induced structural changes in pentacene-based organic thin-film,” Appl. Phys. Lett., vol. 88, pp. 161918-161920, April 2006.
    [16] C. D. Dimitrakopoulos, P. R. L. Malenfant, “Organic Thin-Film Transistors for Large Area Electronics,” Adv. Mater., vol. 14, pp. 99-117, January 2002.
    [17] Y. C. Chen, C. Y. Huang, H. C. Yu, and Y. K. Su, “Nonvolatile memory thin film transistors using CdSe/ZnS quantum dot-poly(methyl methacrylate) composite layer formed by a two-step spin coating technique”, Journal of Applied Physics, 112, 034518 (2012)
    [18] K. P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D. J. Gundlach, B. Batlogg, A. N. Rashid, G. Schitter, “ Threshold voltage shift in organic field effect transistors by dipole monolayers on the gate insulator”, Journal of Applied Physics, 96, 11 (2004)
    [19] Y. L. Guo, Y. Q. Liu, C. A. Di, G. Yu, W. P. Wu, S. H. Ye, Y. Wang, X. J. Xu, Y. M. Sun, “Tuning the threshold voltage by inserting a thin molybdenum oxide layer into organic field-effect transistors”, Applied Physics Letter, 91, 263502 (2007)
    [20] D. J. Gundlach, L. L. Jia, and T. N. Jackson, “Pentacene TFT with improved linear region characteristics using chemically modified source and drain electrodes”, IEEE Electron Device Letters, 22, 12 (2001)
    [21] A. S. Sedra, & K. C. Smith. “Microelectronic Circuit” 4th edition (pp. 354-366), Oxford University Press. (1997)
    [22] Brijesh Kumar, B. K. Kaushik, Y. S. Negi and Poornima Mittal, “Characteristics and Applications of Polymeric Thin Film Transistor: Prospects and Challenges”, Proceedings of ICETECT 2011.

    Chapter 3
    [1] P.V. Necliudov, M.S. Shur, D.J. Gundlach, T.N. Jackson, “Contact resistance extraction in pentacene thin film transistors,” Solid State Electron., 47, 259, 2003
    [2] J. Jang, S.H. Han, “Lifetime of organic thin-film transistors with organic passivation layers,” Current Applied Physics, 6S1, e17–e21, 2006
    [3] C. K. Chen, “Investigation of Albumen Thin Film Transistor Memories Using Quantum Dots”, 2013
    [4]Y. C. Chen, C. Y. Huang, H. C. Yu, and Y. K. Su, “Nonvolatile memory thin film transistors using CdSe/ZnS quantum dot-poly(methyl methacrylate) composite layer formed by a two-step spin coating technique”, J. Appl. Phys., 112, 034518 (2012)
    [5] C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, “Molecular beam deposited thin films of pentacene for organic field effect transistor applications,” J. Appl. Phys., 80, 2501 (1996)
    [6] L Piot, D Bonifazi, P Samori, “Organic reactivity in confined spaces under scanning tunneling microscopy control: tailoring the nanoscale world”, Adv. Funct. Mater., 17, 3693 (2007)
    [7] A. Bagui, S. Sundar Kumar Iyer, “Increase in hole mobility in poly (3-hexylthiophene-2,5-diyl) films annealed under electric field during the solvent drying step”, Organic Electronics, 15, 1387–1395 (2014)
    [8] J. B. Koo, S. Y. Kang, I. K. You, and K. S. Suh, “Effect of UV/ozone treatment on hysteresis of pentacene thin-film transistor with polymer gate dielectric,” Solid-State Electron., 53, 621 (2009)
    [9] Y. C. Chen, Y. K. Su, H. C. Yu, C. Y. Huang, and T. S. Huang, “Nonvolatile memory characteristics of organic thin film transistors using poly(2-hydroxyethyl methacrylate)-based polymer multilayer dielectric”, Appl. Phys. Lett., 99, 143308 (2011)

    Chapter 5
    [1] Y. C. Chen, Y. K. Su, H. C. Yu, C. Y. Huang, and T. S. Huang, “Nonvolatile memory characteristics of organic thin film transistors using poly(2-hydroxyethyl methacrylate)-based polymer multilayer dielectric”, Applied Physics Letters, 99, 143308 (2011)
    [2] J. C. Hsu, W. Y. Lee, H. C. Wu, K. Sugiyama, A. Hirao and W. C. Chen, “Nonvolatile memory based on pentacene organic field-effect transistors with polystyrene para-substituted oligofluorene pendent moieties as polymer electrets”, Journal of Materials Chemistry, 22, 5820, (2012)
    [3] http://www.polyera.com/basic-devices/organic-thin-film-transistors
    [4] Q. D. Linga, D. J. Liawb, C. X. Zhuc, Daniel S. H. Chanc, E. T. Kanga, K. G. Neoh, “Polymer electronic memories: Materials, devices and mechanisms”, Progress in Polymer Science, 33, 917-978 (2008)
    [5] C. K. Chen, “Investigation of Albumen Thin Film Transistor Memories Using Quantum Dots”, 2013
    [6] J. Jang, S. H. Han, “High-performance OTFT and its application”, Current Applied Physics, 6S1, e17–e21, 2006
    [7] Santhanam, V.; Andres, R. P., “Microcontact printing of uniform nanoparticle arrays,” Nano Lett., 4, 41–44, 2004
    [8] C. Sullivan, S.; Steckel, J. S.; Kim, L.; Bawendi, M. G.; Bulovic´, “Method for fabrication of saturated RGB quantum dot light-emitting devices,” V. Proc. SPIE, 5739, 108–115, 2005
    [9] Kumar, A.; Whitesides, G. M., “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘‘ink’’ followed by chemical etching,” Appl. Phys. Lett., 63, 2002–2004, 1993
    [10] T. H. Kim, K. S. Cho, E. K. Lee, S. J. Lee, J. S. Chae, J. W. Kim, D. H. Kim, J. Y. Kwon, G. H. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim and K. N. Kim, “Full-colour quantum dot displays fabricated by transfer printing”, Nature Photonics, VOL 5, MARCH 2011
    [11] L. A. Kim, P. O. Anikeeva, S. A. Coe-Sullivan, J. S. Steckel, M. G. Bawendi, and V. Bulovic, “Contact Printing of Quantum Dot Light-Emitting Devices”, Nano Lett., Vol. 8, 2008
    [12] Y. J. Yun, C. Pearson, and M. C. Petty, “Pentacene thin film transistors with a poly(methyl methacrylate) gate dielectric: Optimization of device performance”, Journal of Applied Physics, 105, 034508 (2009)
    [13] H. Jia, G. K. Pant, E. K. Gross, R. M. Wallace, and B. E. Gnade, “Gate induced leakage and drain current offset in organic thin film transistors,” Org. Electron. 7, 16 (2006)
    [14] S. H. Kim , J. W. Yoon , S. O. Yun , Y. K. Hwang , H. S. Jang , and H. C. Ko, “Ultrathin Sticker-Type ZnO Thin Film Transistors Formed by Transfer Printing via Topological Confi nement of Water-Soluble Sacrifi cial Polymer in Dimple Structure”, Adv. Funct. Mater., 23, 1375–1382, 2013
    [15] D. Bodas, Chantal K. M., “Direct patterning of quantum dots on structured PDMS surface”, Sensors and Actuators, B 128, 168–172, (2007)
    [16] L. A. Kim, P. O. Anikeeva, S. A. Coe-Sullivan, J. S. Steckel, M. G. Bawendi and V. Bulovic, “Contact Printing of Quantum Dot Light-Emitting Devices”, Nano Letters, 8, 12, 4513-4517, (2008)
    [17] A. Rizzo, M. Mazzeo, M. Biasiucci, R. Cingolani, and G. Gigli, “White Electroluminescence from a Microcontact-Printing-Deposited CdSe/ZnS Colloidal Quantum-Dot Monolayer”, small, 4, 2143–2147, 2008
    [18] S. K. Park, Y. H. Kim, J. I. Han, D. G. Moon, W. K. Kim, M. G. Kwak, “Electrical characteristics of poly (3-hexylthiophene) thin film transistors printed and spin-coated on plastic substrates”, Synthetic Metals, 139, 377–384, (2003)

    無法下載圖示 校內:2024-02-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE