| 研究生: |
陳家宇 Chen, Chia-Yu |
|---|---|
| 論文名稱: |
複合圓錐層殼LOVE理論之撓曲分析 Bending Analysis of Laminated Conical Shells by Love's Theory |
| 指導教授: |
吳致平
Wu, Chih-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 英文 |
| 論文頁數: | 32 |
| 中文關鍵詞: | 古典殼理論 、廣義微分數值法 |
| 外文關鍵詞: | differential quadrature, classic shell theory |
| 相關次數: | 點閱:83 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以LOVE古典理論,藉DQ法作圓錐複合層殼之撓曲分析。依不同厚度、形狀及層板排列顯示其應力、應變及位移。經傅利葉級數展開,勁度係數可視為經線的函數 。令圓錐角為零,圓錐殼降為R1半徑的圓柱殼。DQ法中,統御方程式及相應邊界條件被採樣點函數值構成的代數方程式所取代。圖示為各式結構的計算結果,表則為其細節。
The paper exams bending analysis of laminated conical shells by Love掇 classic shell theory (CST) using the method of differential quadrature (DQ). It shows stresses, strains and displacements for different thickness, shape and laminae arrangements. By Fourier expansion, the stiffness coefficients are assumed to be the functions of longitudes. By vanishing the semivertex angle (a), the conical shells are reduced to the cylindrical. In DQ methods, the governing equations and the corresponding boundary conditions are replaced by a set of algebraic equations with the function values at all the sampling points. The figures show the conducts of the various structure and the tables show the details.
[1] Donnell, L. H.: Beams, Plates and Shells. McGraw-Hill, New York. 1976.
[2] Du, H., Lim, M. K. and Lin, R. M.: Application of generalized differential quadrature method to structural problems. International Journal for Numerical Methods in Engineering 37, 1881-1896. 1994
[3] Kil'chevskij, N. A.:Osnovy Analitichevskoj Mekhaniki Oblochek, Izdatel'stvo Akademii Nauk Ukrainskoj SSSR, Kiev, 1963.
[4] Kraus, H.: Thin Elastic Shells. Wiley, New York. 1967.
[5] Leissa, A. W.: Vibration of Shells. NASA SP-288. 1973.
[6] Love, A. E. H.: A Treatise on the Mathematical Theory of Elasticity. Dover, New York. 1944.
[7] Novozhilov, V. V.:Teoriya Tonkikh Oblochek. Sudpromgiz , 1951.
[8] Jones, R. M.: Mechanics of Composite Materials. Scipta, D. C. 1975
[9] Sokonikoff, I. S.: Mathematical Theory of Elasticity. McGraw-Hill, New York. 1956.
[10] Timoshenko, S. P.: History of Strength of Materials. McGraw-Hill, New York.1953
[11] Wu, C. P. and Hung, Y. C.: Asymptotic theory of laminated circular conical shells. International Journal of Engineering Science 37, 977-1005. 1999.
[12] Wu, C. P., Cheng, M. Y. and Chiu, S. J.: An assessment of shell theory for the free vibration analysis of laminated conical shells. NCKU, ROC. 2001.
[13] Zingoni, A.: Shell structures in Civil and Mechanical Engineering. Thomas Telford, London. 1997