簡易檢索 / 詳目顯示

研究生: 周柏維
Chou, Po-Wei
論文名稱: 添加隨機排列式共聚物對團聯式共聚物相行為的影響
Effect of the addition of random copolymer on the phase behavior of block copolymer
指導教授: 羅介聰
Lo, Chieh-Tsung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 108
中文關鍵詞: 團聯式共聚物隨機排列式共聚物結構自組裝
外文關鍵詞: block copolymer, random copolymer, morphology, self-assemble
相關次數: 點閱:53下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用活性自由基聚合法合成隨機排列式共聚物,再將隨機排列式共聚物polystyrene-random-poly(2-vinylpyridine) (PS-r-P2VP)與團聯式共聚物(PS-b-P2VP)摻合,藉由不同的摻合比例和分子量變化,研究摻合物的微相分離結構。
      研究結果得知,使用小分子量隨機排列式共聚物可形成uniform solubilization,而本系統中,Mnb/Mnr必須控制在30以上(Mnb為團聯共聚物分子量,Mnr為隨機排列式共聚物分子量),才能得到較明顯的結構變化,當 Mnb/Mnr~200,隨機排列式共聚物可以分散於PS-b-P2VP中,且使微相區域厚度變小。
      當Mnb/Mnr~30,且隨機排列式共聚物其中之一成份比例為100%時,可形成有序有序轉換;對稱式隨機排列式共聚物(含有50% PS與P2VP之隨機排列共聚物)可以最有效的進入兩相界面區,摻合物結構維持層狀結構,厚度隨摻合比例提高而下降;添加一成分比例為75%之非對稱式隨機排列共聚物,同時有均聚物與對稱式隨機排列共聚物之行為,整體微相區厚度與摻合前相同;添加一成分比例為66%之非對稱式隨機排列共聚物,摻合少量時,其行為較類似對稱式隨機排列共聚物,微相區厚度變小,摻合大量時,其行為較類似一成分比例為75%之非對稱式隨機排列共聚物,微相區厚度最終趨於與摻合前相同。
      當Mnb/Mnr~13與Mnb/Mnr~8時,對稱式隨機排列式仍可分佈於兩相界面區,但僅有少於10%可分散於兩相界面區,添加更多隨機排列共聚物僅形成巨觀相分離,這是由於兩相界面區因隨機排列共聚物鏈段太長無法溶入太多。
      當Mnb/Mnr~3時,均聚物僅少部份分佈於微相區,大部份產生了巨觀相分離,對稱隨機排列式共聚物也僅少部份分佈於微相區,大部份形成巨觀相分離,而非對稱隨機排列共聚物則完全無法分佈於兩相界面區或微相區,僅形成巨觀相分離,且層狀厚度未改變。當分子量Mnb/Mnr<3,對稱式隨機排列式共聚物僅有少量可以分散於兩相界面區,結構仍保持層狀結構,無法形成有序有序轉換或有序無序轉換。

    Polystyrene-block-poly(2-vinylpyridine) (PS-r-P2VP) was synthesized by stable free-radical polymerization (SFRP). As prepared PS-r-PVP was then blended with PS-b-P2VP to study the microphase separated structure with respect to the molecular weight and composition of PS-r-P2VP.
      It was obtained that the uniform solubilization of PS-r-P2VP in PS-b-P2VP can be achieved when the molecular weight of random copolymers is very small. In our system, the morphological transition occur when Mnb/Mnr is smaller than 30 (Mnb is the molecular weight of block copolymer, Mnr is the molecular weight of random copolymer). As Mnb/Mnr~200, random copolymers distributed at the interface between PS and P2VP, and the domain size of blends became smaller.
      When Mnb/Mnr~30, the addition of homopolymers induced an order-order transition. Symmetrical random copolymer (with the incorporation of random copolymers with 50% polystyrene) effectively distributed at the interface between PS and P2VP. The blends formed a lamellar structure and domain size decreased with increasing the content of PS-r-P2VP. Asymmetrical random copolymers with 75% PS or P2VP, its behavior between homopolymers and symmetrical random copolymers, so its domain size is invariant. As asymmetrical random copolymers with 66% PS, add 20% into block copolymer, it acts like symmetrical random copolymers, but add 30% into block copolymer, it acts like asymmetrical random copolymers with 75% PS or P2VP, and finally domain size is invariant.
      When Mnb/Mnr~13 or Mnb/Mnr~8, less than 10% symmetrical random copolymers could distribute at the PS-b-P2VP interface. The addition of higher content of random copolymers cause macrophase separation, due to the large chain length of PS-r-P2VP.
      When Mnb/Mnr~3, less than 10% homopolymer could distribute at the microphase. The addition of higher content of homopolymer cause macrophase separation. Less than 10% symmetrical random copolymers could distribute at the PS-b-P2VP interface. The addition of higher content of random copolymers cause macrophase separation. Asymmetrical random copolymers cause macrophase separation and domain size is invariant. When Mnb/Mnr<3, only 10% symmetrical random copolymers could distribute at the PS-b-P2VP interface. The blends formed a lamellar structure rather than order-order transition or order-disorder transition.

    摘要 I Abstract III 誌謝 V 總目錄 VI 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 自組裝 3 2.2 團聯式共聚物之微相分離形態 5 2.3 團聯共聚物摻合系統之形態變化 15 第三章 實驗 25 3.1 藥品 25 3.2 儀器與耗材 26 3.3 實驗方法 27 3.3.1 苯乙烯(styrene)單體之純化 28 3.3.2 2-乙烯基吡啶(2-vinylpyridine)單體之純化 28 3.3.3隨機排列式共聚物共聚物(random copolymer),聚苯乙烯吡啶(PS-r-P2VP)的合成 28 3.3.4 聚合物結構鑑定 30 3.3.5 摻合PS-b-P2VP與PS-r-P2VP 30 3.4 分析方法 32 3.4.1 傅立葉轉換紅外線光譜儀(fourier transform infrared spectrometer, FT-IR) 32 3.4.2 核磁共振光譜儀(nuclear magnetic resonance spectroscopy, NMR) 33 3.4.3 凝膠滲透層析儀(gel permeation chromatography, GPC) 34 3.4.4 小角度X光散射儀(small angle X-ray scattering, SAXS) 35 3.4.5 穿透式電子顯微鏡(transmission electron microscope, TEM) 37 第四章 結果與討論 38 4.1 SFRP聚合隨機排列式共聚物(PS-r-P2VP)之分析 38 4.1.1 傅立葉轉換紅外線光譜儀鑑定 41 4.1.2 核磁共振光譜儀鑑定 43 4.1.3 凝膠滲透層析儀鑑定 47 4.2 團聯式共聚物摻合隨機排列式共聚物之分析 48 4.2.1 PS-b-P2VP塊材之微結構鑑定 49 4.2.2 團聯共聚物/隨機排列共聚物摻合系統 51 4.2.3 不同分子量對隨機排列式共聚物摻合系統之影響 58 4.2.4 組成比例對大分子量隨機排列式共聚物摻合系統之影響 76 4.2.5 組成比例對小分子量隨機排列式共聚物摻合系統之影響 89 結論 103 參考文獻 105

    1.G.M. Whitesides, B. Grzybowski, Science, 2002, 295, 2418.
    2.S. Forster, T. Plantenberg, Angew. Chem.-Int. Edit., 2002, 41, 689.
    3.G.M. Whitesides, J.P. Mathias, C.T. Seto, Science, 1991, 254, 1312.
    4.E.A. Chandross, R.D. Miller, Chem. Rev., 1999, 99, 1641.
    5.K.W. Guarini, C.T. Black, S.H.I. Yeuing, Adv. Mater., 2002, 14, 1290.
    6.F.S. Bates, Science, 1991, 251, 898.
    7.F.S. Bates, G.H. Fredrickson, Annu. Rev. Phys. Chem., 1990, 41, 525.
    8.Developments in block copolymers / edited by i. Goodman. 1. Developments series, ed. I. Goodman, London :: Applied Science.
    9.H. Tanaka, T. Hashimoto, Macromolecules, 1991, 24, 5713.
    10.E.L. Thomas, D.M. Anderson, C.S. Henkee, D. Hoffman, Nature, 1988, 334, 598.
    11.D.A. Hajduk, H. Takenouchi, M.A. Hillmyer, F.S. Bates, M.E. Vigild, K. Almdal, Macromolecules, 1997, 30, 3788.
    12.F. Drolet, G.H. Fredrickson, Phys. Rev. Lett., 1999, 83, 4317.
    13.M.W. Matsen, F.S. Bates, Macromolecules, 1996, 29, 7641.
    14.C. Park, J. Yoon, E.L. Thomas, Polymer, 2003, 44, 6725.
    15.F.S. Bates, G.H. Fredrickson, Phys. Today, 1999, 52, 32.
    16.D.J. Meier, Journal of Polymer Science Part C-Polymer Symposium, 1969, 81.
    17.E. Helfand, Macromolecules, 1975, 8, 552.
    18.E. Helfand, Z.R. Wasserman, Macromolecules, 1976, 9, 879.
    19.E. Helfand, Z.R. Wasserman, Macromolecules, 1980, 13, 994.
    20.E. Helfand, Z.R. Wasserman, Macromolecules, 1978, 11, 960.
    21.L. Leibler, Macromolecules, 1980, 13, 1602.
    22.M. Antonietti, S. Forster, M.A. Micha, O. Oestreich, Acta Polym., 1997, 48, 262.
    23.J. Rosedale, F.S. Bates, K. Almdal, K. Mortensen, G.D. Wignall, Macromolecules, 1995, 28, 1429.
    24.J.D. Vavasour, M.D. Whitmore, Macromolecules, 1992, 25, 5477.
    25.M.W. Matsen, M. Schick, Phys. Rev. Lett., 1994, 72, 2660.
    26.M.W. Matsen, F.S. Bates, Macromolecules, 1996, 29, 1091.
    27.A.K. Khandpur, S. Forster, F.S. Bates, I.W. Hamley, A.J. Ryan, W. Bras, K. Almdal, K. Mortensen, Macromolecules, 1995, 28, 8796.
    28.M.F. Schulz, A.K. Khandpur, F.S. Bates, K. Almdal, K. Mortensen, D.A. Hajduk, S.M. Gruner, Macromolecules, 1996, 29, 2857.
    29.S.I. Stupp, P.V. Braun, Science, 1997, 277, 1242.
    30.J. Sun, X.S. Chen, J.Z. Wei, L.S. Yan, X.B. Jing, J. Appl. Polym. Sci., 2010, 118, 1738.
    31.D.H. Kim, Z.C. Sun, T.P. Russell, W. Knoll, J.S. Gutmann, Adv. Funct. Mater., 2005, 15, 1160.
    32.S.H. Kim, O.H. Park, F. Nederberg, T. Topuria, L.E. Krupp, H.C. Kim, R.M. Waymouth, J.L. Hedrick, Small, 2008, 4, 2162.
    33.A.H. Yuwono, Y. Zhang, J. Wang, X.H. Zhang, H.M. Fan, W. Ji, Chem. Mat., 2006, 18, 5876.
    34.X. Li, K.H.A. Lau, D.H. Kim, W. Knoll, Langmuir, 2005, 21, 5212.
    35.C.C. Weng, K.H. Wei, Chem. Mat., 2003, 15, 2936.
    36.K. Edelmann, M. Janich, E. Hoinkis, W. Pyckhout-Hintzen, S. Horing, Macromol. Chem. Phys., 2001, 202, 1638.
    37.J.T. Chen, M.F. Zhang, L. Yang, M. Collins, J. Parks, A. Avallone, T.P. Russell, J. Polym. Sci. Pt. B-Polym. Phys., 2007, 45, 2912.
    38.Y.N. Xia, B. Gates, Z.Y. Li, Adv. Mater., 2001, 13, 409.
    39.L. Martin-Moreno, F.J. Garcia-Vidal, A.M. Somoza, Phys. Rev. Lett., 1999, 83, 73.
    40.K. Kimishima, T. Hashimoto, C.D. Han, Macromolecules, 1995, 28, 3842.
    41.H. Tanaka, H. Hasegawa, T. Hashimoto, Macromolecules, 1991, 24, 240.
    42.H. Hasegawa, H. Tanaka, K. Yamasaki, T. Hashimoto, Macromolecules, 1987, 20, 1651.
    43.K.I. Winey, E.L. Thomas, L.J. Fetters, Macromolecules, 1992, 25, 2645.
    44.R.J. Spontak, S.D. Smith, A. Ashraf, Macromolecules, 1993, 26, 5118.
    45.Y. Matsushita, N. Torikai, Y. Mogi, I. Noda, C.C. Han, Macromolecules, 1993, 26, 6346.
    46.N.Y. Vaidya, C.D. Han, D. Kim, N. Sakamoto, T. Hashimoto, Macromolecules, 2001, 34, 222.
    47.D.C. Kim, S.I. Yoo, S.W. Moon, W.C. Zin, Polymer, 2005, 46, 6595.
    48.S.C. Chen, S.W. Kuo, U.S. Jeng, C.J. Su, F.C. Chang, Macromolecules, 2010, 43, 1083.
    49.I. Hamley, V. Castelletto, Small-angle scattering of block copolymers, in Soft matter characterization, R. Borsali and R. Pecora, Editors. 2008, Springer Netherlands. p. 1021.
    50.C.-T. Lo, Y.-C. Chang, S.-C. Wu, C.-L. Lee, Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2010, 368, 6.
    51.C.E. Carraher, R.B. Seymour, Seymour/carraher's polymer chemistry. 2007: CRC Press.
    52.W.A. Hamilton, G.S. Smith, N.A. Alcantar, J. Majewski, R.G. Toomey, T.L. Kuhl, J. Polym. Sci. Pt. B-Polym. Phys., 2004, 42, 3290.
    53.S. Krause, Pure and Applied Chemistry, 1986, 58, 1553.
    54.H. Elbs, K. Fukunaga, R. Stadler, G. Sauer, R. Magerle, G. Krausch, Macromolecules, 1999, 32, 1204.
    55.D. Gersappe, A.C. Balazs, Physical Review E, 1995, 52, 5061.
    56.Y. Lyatskaya, D. Gersappe, N.A. Gross, A.C. Balazs, Journal of Physical Chemistry, 1996, 100, 1449.

    下載圖示 校內:2014-09-06公開
    校外:2016-09-06公開
    QR CODE