簡易檢索 / 詳目顯示

研究生: 范恩碩
Fan, En-Shuo
論文名稱: 以九二一集集地震案例探討細料對液化潛能評估之影響
THE STUDY OF FINES CONTENT AFFECTING ON LIQUEFACTION POTENTIAL EVALUATION FOR SITES LIQUEFACTION DURING CHI-CHI EARTHQUAKE,1999
指導教授: 倪勝火
Ni, Sheng-Huoo
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 191
中文關鍵詞: 土壤液化潛能評估921集集地震標準貫入試驗細料含量修正
外文關鍵詞: Soil Liquefaction Potential Evaluation, Correction of Fines Content, Chi-Chi Earthquake, 1999, Standard Penetration Testing
相關次數: 點閱:153下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究之主要目的在藉由 921集集地震台灣中部液化案例與非液化案例建立適用於台灣地區之土壤液化阻抗曲線與細料含量修正式,由於台灣中部地區的土層多為沉泥質砂性土層,含有較高比例的無塑性細料,在進行液化潛能評估時,容易高估細料對土壤液化阻抗之影響,因此,有必要藉由中部地區土層資料建立適地化細料含量修正式與液化阻抗曲線。
      本研究引用的中部液化區鑽孔資料主要有兩個來源,一為賴宏源(2000)針對南投市軍功寮與振興里、彰化縣大村鄉黃厝村與美港村員林鎮崙雅里、社頭鄉山湖村及台南縣後壁鄉菁寮村 (1022嘉義地震液化案例) ,另一為黃俊鴻及楊志文 (2001)中之288筆中部地區液化與非液化資料,其包含範圍除上述外尚包含台中港區及彰濱工業區,嘉義縣北港鎮、太保市及嘉義市等。
      本研究之主要內容除了討論液化阻抗影響因素及常見的 SPT-N值液化簡易評估法外,並提出本研究的主要成果-建立適用於台灣高細料含量土層之細料含量修正式與液化阻抗曲線,此外,在發展過程中進一步利用統計方法以了解 SPT-N值的主要影響因素與權重,以期所建立的細料含量修正式在參數的選用上能合乎物理性要求;本研究建立的液化阻抗曲線,以黃俊鴻及楊志文(2001)之 288筆鑽探資料驗証,其整體準確率約可達 95%,其中除了底部夾雜少量礫石的土層,可能因 SPT-N值無法真實呈現現地土層的疏緊程度而可能高估土壤液化阻抗外,其他液化地區的土層皆可被正確判別,由此可以証明本研究之液化阻抗曲線與細料含量修正式應可用於評估台灣地區土層之液
    化阻化;此外,本研究建立細料含量修正式的流程可做為其他地區建立細料含量修正式的參考。

      This purpose of this paper is to develop the suitability correction factor of fines content on the evaluation of liquefaction potential. Because most of the fines in the soil stratum are nonplastic in the central
    Taiwan, the liquefaction resistance will be overestimated due to overestimate effect of fines. Therefore, the suitability liquefaction resistance curve and effect of fines content should be developed.
      The data used in this study are quoted from Li's paper (2000) and Huang and Yang's paper (2001), and they were obtained from holes bored at sites where liquefied or unliquefied during Chi-Chi Earthquake, 1999. The relationship between the SPT-N value and fines content of in situ stratum could be observed from using the data which recorded in Li's paper, and it could be used to develop the
    suitable correction factor of fines content. After the suitable correction factor of fines content is developed, the liquefaction resistance curve could be found.
      A new liquefaction resistance curve and a new correction factor of fines content are developed in this study. The liquefied cases will be almost distinguished validly, except, those with a little gravel mixed into the soil stratum. The liquefaction resistance may be over-
    estimated since the SPT-N value and the soil density don't match well for soil stratum is mixed into a little gravel. Hence, the liquefaction resistance curve and the correction
    factor of fines content are suitable to evaluatethe soil liquefaction potential of the central Taiwan. Furthermore, the process to develop the correction factor of fines content could be usedas a reference to develop the correction factor of fines content of the other area.

    提要..................................................I 誌謝................................................III 目錄.................................................IV 表目錄. ............................................VII 圖目錄...............................................IX 符號說明............................................XII 第一章 緒論...........................................1 1.1 研究動機..........................................1 1.2 研究目的..........................................2 1.3 研究方法..........................................2 1.4 論文架構..........................................3 第二章 液化相關理論回顧...............................4 2.1 靜、動態荷重下超額孔隙水壓力激發之機理............4 2.2 砂土液化的現象與定義..............................6 2.3 土壤液化阻抗影響因素..............................7 2.3.1 純淨砂性土壤液化阻抗影響因素....................7 2.3.2 可能液化土壤之認定準則.........................12 第三章 SPT-N值液化簡易評估法.........................28 3.1 標準貫入試驗.....................................28 3.1.1 標準貫入試驗的問題、演進與修正因素.............28 3.2常用SPT-N值液化簡易評估法.........................32 3.2.1 Seed簡易評估法.................................32 3.2.2 日本道路協會耐震規範簡易評估法(JRA Method) ....38 3.2.3 新日本道路協會耐震規範簡易評估法(NJRA Method) .42 3.2.4 Tokimatsu 及Yoshimi簡易評估法(T&Y法) ..........45 3.2.5 Iwasaki液化潛能指數(Tatsuoka,1980) ...........49 3.3 常用SPT-N值液化簡易評估法之比較與討論............50 3.3.1 Seed法與T&Y法的比較............................50 3.3.2 JRA法(NJRA法)在使用上應注意事項................53 第四章 液化阻抗曲線與細料含量修正式的建立............82 4.1 細料含量修正式的意義與型式.......................82 4.1.1 細料含量修正式之意義...........................82 4.1.2 細料含量修正式之型式...........................82 4.2 中部地區土層細料含量修正式之建立.................87 4.2.1 前期學者對SPT-N值影響因素之回顧................87 4.2.2 集集地震中部地區土層之細料含量與N1值關係.......89 4.2.3 細料含量修正式模式建立.........................90 4.3 中部地區土層液化阻抗曲線之建立...................92 4.3.1 液化阻抗曲線之建立.............................92 4.3.2 液化阻抗曲線比較...............................99 4.3.3 細料含量修正式之比較...........................96 4.3.4 分析結果研判..................................101 4.3.5 國外案例之比較與討論..........................103 4.3.6 本研究建議方法整理............................104 4.4 影響N1,60值之因素與權重.........................106 第五章 結論與建議...................................164 5.1 結論............................................164 5.2 建議............................................166 參考文獻............................................167

    參考文獻
    1.鄭文隆,「淺談地震作用下基礎土壤液化及液化潛能評估法」,現代營
    建,第二卷,第一期,(1981)。
    2.中華人民共和國國家標準,「建築抗震設計規範」,中國建築工業出版
    社,北京(1989)。
    3.陳名利,「以剪力模數評估砂土液化潛能之研究」,碩士論文,國立台
    灣工業技術學院工程技術研究所營建工程組,台北(1990)。
    4.陳堯中,「細料含量對砂土最大剪力模數與液化阻抗關係之影響」,行
    政院國家科學委員會專題研究計畫,NSC 84-2211-E-011-025 (1995)。
    5.吳偉特,「現有液化潛能評估方法應用於台北盆地土壤之探討(一)」,
    國科會專題研究報告(1997)。
    6.翁作新,「砂土孔隙水壓受震激發機制與模式(III)」,國科會專題研究
    報告(1998)。
    7.曾顯琳,「過壓密對砂土穩定狀態及液化阻抗之影響」,碩士論文,國
    立台灣工業技術學院營建工程技術研究所,台北(1997)。
    8.廖廷勖,「過壓密對砂土動態性質及穩定狀態之影響」,碩士論文,國
    立台灣工業技術學院營建工程技術研究所,台北(1998)。
    9.黃俊鴻、陳正興,「土壤液化評估規範之回顧與前瞻」,地工技術,第
    70期,第23-44頁(1998)。
    10.林炳森,「921集集大地震南投市液化初步調查研究」,行政院國家科
    學委員會國家地震工程研究中心專案報告 (2000)。
    11.亞新工程顧問公司,「土壤液化評估與處理對策研擬第一期計劃(彰化
    員林鎮、大村鄉及社頭鄉)總報告」,行政院國家科學委員會計畫編
    號:99068 (2000)。
    12.亞新工程顧問公司,「南投、霧峰地區土壤液化調查研究」,行政院國
    家科學委員會 (2000)
    13.陳順宇,多變量分析,華泰書局 (2000)。
    14.翁作新、林炳森、褚炳麟,「員林、霧峰及南投地區土壤液化特性」,
    地工技術,第81期,第47-56頁 (2000)。
    15.賴宏源,「九二一集集地震中部地區土壤液化案例之研析」,碩士論
    文,國立成功大學土木工程研究所,台南(2000)。
    16.蘇鼎鈞、王劍虹,「員林地區集集大地震土壤液化評估案例探討」,地
    工技術,第81期,第57-68頁 (2000)。
    17.黃俊鴻、楊志文,「以集集地震案例資料建立土壤臨界液化強度曲
    線」,中國土木水利工程學刊,第十三卷,第二期,第339-352頁
    (2001)。
    18.陳景文、李德河、古志生,「CPT應用於地盤調查與液化潛能評估之
    研究-液化土壤之特性」,2001年土壤液化評估在大地工程上之應用
    研討會論文集,第I-1-I-25頁,台中 (2001)。
    19.李咸亨、劉家男、吳志明、郭政彥,「適用於國內之液化潛能評估方
    法之研究」,集集地震土壤液化總評估研究九十學年度期中研究成果
    研討會論文集,第65-72頁(2002)。
    20.黃安斌、蔡明道、林智勇、何輔仁,「粉土細砂之壓縮性、膨脹性、
    與動靜態強度」,集集地震土壤液化總評估研究九十學年度期中研究
    成果研討會論文集,第167-188頁(2002)。
    21.黃俊鴻、張吉佐、周功台、余明山、簡文郁,由集集地震液化案例探
    討液化評估方法本土適用性之研究,交通部台灣區國道新建工程局
    (2002)。
    22.日本土質工學會,土質調查法 (1982)。
    23.日本土質工學會,土?調查實習書 (1983)。
    24.日本道路協會,道路橋示方書‧同解說,V耐震設計篇 (1990)。
    25.日本道路協會,道路橋示方書‧同解說,V耐震設計篇 (1996)。
    26.日本地盤工學會,液狀化對策?調查設計??施工?? (1993)。
    27.日本土木學門,實務?先輩???書??-土木構造物?耐震設計入
    門 (2001)。
    28.Andrew, D. C. A. and Martin G. R. “Criteria for Liquefaction of Silty
    Soils,” 12th World Conference on Earthquake Engineering, Proceedings,
    Auckland, New Zealand (2000).
    29.Been, K. and Jefferies, M. G., “A State Parameter for Sands,”
    Geotechnique, Vol. 35, No.2, pp.99-112 (1985).
    30.Chaney, R. C., “Saturation Effects on the Cyclic Strength of Sands,”
    Earthquake Engineering and Soils Dynamics, ASCE, Vol. 1, pp.342-358
    (1978).
    31.Cubrinovski, M. and Ishihara, K., “Empirical Correlation between SPT
    N-Value and Relative Density for Sandy Soils,” Soils and Foundations,
    Vol. 39, No. 5, pp. 61-71 (1999).
    32.Das, B. M., Princiles of Soil Dynamics, PWS-KENT Publishing
    Company, Boston (1993).
    33.Earthquake Resistant Structure Research Center, Studies on Earthquake
    Engineering Results of Recent Researches by the Members of Earthquake
    Resistant Structure (ERS) Research Center, The Institute of Industrial
    Science, University of Tokyo (1986).
    34.Farrar, J., Standard Penetration Test: Driller’s/ Operator’s Guide, U. S.
    Department of Interior Bureau of Reclamation, Dam Safety Office
    (1999).
    35.Ferritto, J. M., “Seismic Design Criteria for Soil Liquefaction,” Naval
    Facilities Engineering Service Center Technical Report TR-2077-SHR,
    Port Hueneme, California (1997).
    36.Fletcher, G. F. A. “Standard Penetration Test: Its Uses and Abuses,”
    Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.91,
    No.SM4, pp.67-75 (1965).
    37.Huang, A.B., Hsu, H.H., Chang, J.W., “The Behavior of a Compressible
    Silty Fine Sand,” Canadian Geotechnical Journal, Vol.36, No.1,
    pp.88-101 (1999).
    38.Ishibashi, I., Shrif, M A., and Cheng, W. L., “The Effects of Soil
    Parameters on Pore-Pressure-Rise and Liquefaction Prediction,” Soils and
    Foundations, Vol.22, No.1, pp.37-48 (1982).
    39.Ishihara, K., and Yasuda, S., “Sand Liquefaction in Hollow Cylinder
    Torsion under Irregular Excitation,” Soils and Foundations, Vol. 15, No.1,
    pp.45-59 (1975).
    40.Ishihara, K., “Simple Method of Analysis for Liquefaction of Sand
    Deposits during Earthquakes,” Soils and Foundations, Vol. 17, No. 3,
    pp.1-17 (1977).
    41.Ishihara, K. and Okada, Shigeru, “Effects of Stress History on Cyclic
    Behavior of Sand,” Soils and Foundations, Vol.18, No.4, pp.29-45
    (1978).
    42.Ishihara, K., Sodekawa, M., and Tanaka, Y., “Effect of Overconsolidation
    on Liquefaction Characteristics of Sand Containing Fine,” Dynamics
    Geotechnical Test, ASCE, STP 654, ASTM, pp.246-264 (1978).
    43.Ishihara, K., and Yasuda, S., “Sand Liquefaction in hollow cylinder
    torsion under irregular excitation,” Soils and Foundations, Vol. 15, No.1
    pp.29-45 (1975).
    44.Iwasaki, T., “Soil Liquefaction Study in Japan: State-of-the art,” Soil
    Dynamics and Earthquake Engineering, Vol. 5, No. 1 (1986).
    45.Iwasaki, T., Arakawa, T., and Tokida, K., “Simplified Procedures for
    Assessing Soil Liquefaction During Earthquakes,” Soil Dynamics and
    Earthquake Engineering Conference, Southampton, pp. 925-939 (1982).
    46.Kulhway, F. H., and Mayne, P. W., “Manual on Estimating Soil Properties
    for Foundation Design,” Cornell University, El-6800, Research Project
    1493-6, Prepared for Electric Power Research Institute (1990).
    47.Ladd, R. S., “Specimen Preparation and Liquefaction of Sands,” Journal
    of the Geotechnical Engineering Division, ASCE, Vol.110, No. GT10,
    pp.1180-1184 (1974).
    48.Ladd, R. S., Dorby, R., Dutko, P., Yokel, F. Y., and Chung, R. M.,
    “Pore-Water Pressure Build up in Clean Sands Because of Cyclic
    Straining,” Geotechnical Testing Journal, GTJODJ, Vol.12, No.1,
    pp.77-96 (1989).
    49.Liao, S., and Whitman, R. V., “Overburden Correction Factors for SPT in
    Sand,” Journal of Geotechnical Engineering, ASCE, Vol. 114, No. GT3,
    pp.373-377 (1985).
    50.Lin, P. S., Hseih, C. C., and Wang, C. K., “The Preliminary Study on Soil
    Liquefaction of 921 Chi-Chi Earthquake in the Nantou City,” National
    Science Council, Republic of China (2000)
    51.Lin, P. S., and Chang, C. W., “Damage Investigation and Liquefaction
    Potential Analysis of Gravelly Soil,” Journal of the Chinese Institute of
    Engineers, Vol.25, No. 5, pp.543-554 (2002)
    52.Marcuson Ⅲ, W. F. and Bieganousky, W. A. “SPT and Relative Density
    in Coarse Sands,” Journal of the Geotechnical Engineering Division,
    ASCE, Vol. 103, No. GT11, pp. 1295-1309 (1977).
    53.Marcuson, Ⅲ, W. F., Jynes, M. E., and Franklin, A. G., “Evaluation and
    use of residual strength in seismic safety analysis of embankments,”
    Earthquake Spectra, Vol. 6, No. 3, pp.529-572 (1990).
    54.Miura, S., and Kawamura, S., “A Procedure Minizing Membrane
    Penetration Effects in Undrained Triaxial Test,” Soils and Foundations,
    Vol. 36, No. 4, pp.119-126 (1996).
    55.Mori, K., Seed, H. B., and Chan, C. K., “Influence of Sample Disturbance
    on Sand Response to Cyclic Loading,” Journal of the Geotechnical
    Engineering Division, ASCE, Vol. 104, No. 3, pp. 323-339 (1978).
    56.Ni, S. H., and Fan, E. S., “Fines Content Effect on Liquefaction Potential
    Evaluation for Sites Liquefied during Chi-Chi Earthquake, 1999,”
    Journal of the Chinese Institute of Engineers, Vol. 25, No. 5, pp.533-542
    (2002).
    57.Oda, M., “Initial Fabric and their Relations to Mechanical Properties of
    Granular Material,” Soils and Foundations, Vol. 12, No. 1, pp. 17-36
    (1972).
    58.Oda, M., “Co-ordination Number and Its Relation to Shear Strength of
    Granular Material,” Soils and Foundations, Vol.17, No.2, pp.29-42
    (1977).
    59.Peacock, W. H. and Seed, H. B., “Sand Liquefaction Under Cyclic
    Loading Simple Shear Conditions,” Journal of the Soil Mechanics and
    Foundations Division, ASCE, Vol. 94, No. SM3, pp.689-708 (1968).
    60.Poulos, S. J. Castro, G. and France, J. W., “The Steady State of
    Deformation,” Journal of Geotechnical Engineering Division, ASCE, Vol.
    107, No. GT5, pp.553-562 (1981).
    61.Robertson, P. K., and Wride, C. E., “Cyclic Liquefaction and its
    Evaluation based on the SPT and CPT,” Proceeding of the NCEER
    Workshop on Evaluation of Liquefaction Resistance of Soils, pp.41-88,
    Buffalo (1996).
    62.Schmertmann, J. H., and Palacios, A., “Energy dynamics of SPT,”
    Journal of Geotechnical Engineering Division, ASCE, Vol. 105, No. GT8,
    pp.909-926 (1979)
    63.Seed, H. B. and Idriss, I. M., “Analysis of Soil Liquefaction: Niigata
    Earthquake,” Journal of the Soil Mechanics and Foundations Division,
    ASCE, Vol.93, No.SM3, pp.83-108 (1967).
    64.Seed, H. B. and Idriss, I. M., “Simplified Procedure for Evaluating Soil
    Liquefaction Potential,” Journal of the Soil Mechanics and Foundations
    Division, ASCE, Vol.97, No.SM9, pp.1249-1273 (1971).
    65.Seed, H. B., Idriss, I. M., Makdisi, F., and Banerjee, N., “Representation
    of Irregular Stress Time Histories by Equivalent Uniform Stress Series in
    Liquefaction Analyses,” Report No. EERC 75-29, Department of Civil
    Engineering, University of California, Berkeley, Calif., Oct., (1975).
    66.Seed, H. B., Martin, P. P., and Lysmer, J. “Pore-Water Pressure Changes
    during Soil Liquefaction,” Journal of the Geotechnical Engineering
    Division, ASCE, Vol. 102, No. GT4, pp.323-346 (1976).
    67.Seed, H. B., Mori, K., and Chan, C. K., “Influence of Seismic History on
    Liquefaction of Sands,” Journal of the Geotechnical Engineering
    Division, ASCE, Vol. 103, No. 4, pp. 257-270 (1977).
    68.Seed, H. B., “Soil Liquefaction and Cyclic Mobility Evaluation for Level
    Ground during Earthquakes,” Journal of Geotechnical Engineering
    Division, ASCE, Vol. 105, No. GT2, pp.201-205 (1979a).
    69.Seed, H. B., “Considerations in the Earthquake-Resistance Design of
    Earth and Rockfill Dams,” Geotechnique, Vol. 29, No. 3, pp.215-263
    (1979b).
    70.Seed, H. B., Idriss, I. M., and Arango, I., “Evaluation of Liquefaction
    Potential Using Field Performance Data,” Journal of the Geotechnical
    Engineering, ASCE, Vol. 109, No. 3, pp. 458-482 (1983).
    71.Seed, H. B., Tokimatsu, K., Harder, L. F., and Chung, R. M., “Influence
    of SPT Procedures in Soil Liquefaction Resistance Evaluation,” Journal
    of Geotechnical Engineering, ASCE, Vol.111, No.12, pp.1425-1445
    (1985).
    72.Skempton, A. W., “Standard Penetration Test Procedures and the Effects
    in Sands of Overburden Pressure, Relative Density, Particle Size, Aging
    and Overconsolidation,” Geotechnique, Vol. 36, No. 3, pp.425-447 (1986)
    73.Tatsuoka, F., Iwasaki, T., Tokida, K., Yasuda, S., Hirose, M., Imai, T., and
    Kon-no, M., “Standard Penetration Tests and Soil Liquefaction Potential
    Evalutation,” Soils and Foundations, Vol. 20, No. 4, pp.95-111 (1980).
    74.Tsuchida, H. “Prediction and Countermeasure Against the Liquefaction in
    Sand Deposits,” pp.3-1-3.33 in Abstract of the Seminar in the Port and
    Harbor Research Institute (1970).
    75.Tokimatsu, K., and Yoshimi, Y., “Empirical Correlation of Soil
    Liquefaction based on SPT N-value and Fines Content,” Soils and
    Foundations, Vol. 23, No. 4, pp.56-74 (1983).
    76.Ueng, T. S., Lin, M. L., Li, I. Y., Chu, C. M., and Lin, J. S., “Dynamic
    Characteristics of Soils in Yuan-Lin Liquefaction Area,” Journal of the
    Chinese Institute of Engineers, Vol. 25, No. 5, pp. 555-565 (2002).
    77.Yoshimi, Y., Tokimatsu, K., and Ohara, J., “In Situ Liquefaction
    Resistance of Clean Sands over a Wide Density Range,” Geotechnique,
    Vol.44, No.3, pp.479-494 (1994).
    78.Yoshimi, Y., Tanaka, K., and Tokimatsu, K., “Liquefaction Resistance of
    Partially Saturated Sand,” Soils and Foundations, Vol.29, No. 3,
    pp.157-162 (1988).
    79.Youd, T. L., Idriss, I. M., Andrus, R. D., Arango, I., Castro, G., Christian,
    J. T., Dorby, R., Finn, W. D. L., Jr., Harder, L. F., Hynes, M. E., Ishihara,
    K., Koester, J. P., Liao, S. S. C., Marcuson Ⅲ, W. F., Martin, G. R.,
    Mitchell, J. K., Moriwaki, Y., Power, M. S., Robertson, P. K., Seed, R. B.,
    and Stokoe Ⅱ, K. H., “Summary Report,” Proceeding of the NCEER
    Workshop on Evaluation of Liquefaction Resistance of Soils, pp.1-41,
    Buffalo, (1996)
    80.Youd, T. L., Idriss, I. M., Andrus, R. D., Arango, I., Castro, G., Christian,
    J. T., Dorby, R., Finn, W. D. L., Jr., Harder, L. F., Hynes, M. E., Ishihara,
    K., Koester, J. P., Liao, S. S. C., Marcuson Ⅲ, W. F., Martin, G. R.,
    Mitchell, J. K., Moriwaki, Y., Power, M. S., Robertson, P. K., Seed, R. B.,
    and Stokoe Ⅱ,K. H., “Liquefaction Resistance of Soils: Summary
    Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on
    Evaluation of Liquefaction Resistance of Soils,” Journal of Geotechnical
    and Geoenvironmental Engineering, ASCE, Vol. 127, No. 10, pp.817-833,
    (2001).

    下載圖示 校內:立即公開
    校外:2004-07-12公開
    QR CODE