簡易檢索 / 詳目顯示

研究生: 陳雅均
Chen, Ya-Jun
論文名稱: BRD4在複製壓力下參與複製叉保護機制
BRD4 participates in replication fork protection mechanism under replication stress
指導教授: 廖泓鈞
Liaw, Hung-Jiun
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 79
中文關鍵詞: BRD4複製壓力反向複製叉的保護同源重組修復
外文關鍵詞: BRD4, replication stress, fork reversal protection, homologous recombination repair
相關次數: 點閱:31下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當細胞遇到複製壓力時會造成複製叉停滯(fork stalled),此時細胞啟動反向複製叉(fork reversal)機制,保護複製叉免於崩潰,並藉由同源重組(homologous recombination, HR)解決複製叉停滯問題。溴結構域和末端外結構域蛋白家族(Bromodomain and Extra-Terminal Domain, BET family)透過辨識組蛋白乙醯化和調控轉錄因子,在癌細胞中參與促癌因子的調控,使癌細胞增生,其中BRD4在BET family中研究最為廣泛,特別是含有長C端區域(C-terminal domain, CTD),和正轉錄因子(p-TEFb)結合以促進轉錄延伸。先前研究指出BRD4缺陷細胞削弱HR修復功能,也會使複製期的檢查點失效造成DNA損傷累積,然而BRD4是否在複製壓力下修復DNA損傷並參與反向複製叉的保護,再透過調控HR相關蛋白進行修復,尚未有明確的機制證實。在此我們發現使用BET 抑制劑Mivebresib或是降低BRD4,結合PARP抑制劑Olaparib聯合處理使細胞敏感性增加,下調BRD4也會使參與保護反向複製叉的蛋白FANCD2、NS、RAD51表達下降,利用DR-GFP檢測中證實BRD4參與HR修復路徑,在複製壓力下下調BRD4蛋白,證實BRD4保護停滯的複製叉。同時在BRD4缺陷細胞中處於複製壓力下,使DNA損傷修復能力降低,伴隨單股DNA暴露與複製叉崩潰的現象,綜合以上結果,我們證實BRD4透過調控HR相關蛋白參與反向複製叉的保護,並在DNA損傷修復中發揮重要作用。

    Replication stress causes replication fork stalling, triggering the fork reversal mechanism to protect the stalled forks from collapse into DNA double-strand breaks (DSBs). The reversed forks are protected by BRCA1/BRCA2, components of homologous recombination (HR), and FANCD2, a component of Fanconi anemia pathway to prevent nascent DNA degradation by MRE11 nucleases. Current studies reveal that the reversal mechanism not only protect stalled forks from collapse, but also facilitates the restart of DNA replication through the HR mechanism. The Bromodomain and Extra-Terminal Domain (BET) family proteins, particularly BRD4, play a critical role in transcription regulation and are implicated in oncogenesis. Previous studies have shown that BET inhibitor (BETi) and (PARPi) have synergistical effects against cancer cells, indicating that BET proteins are involved in the HR pathway. Since several components of HR are also involved in fork protection, we want to test whether BRD4 is also involved in fork reversal mechanism. Here, we demonstrate that BRD4 depletion sensitizes cells to DNA damaging agents, shows defective DNA repair and impairs HR repair and fork protection by downregulating key proteins such as FANCD2 , HLTF , and RAD51.Our results underscore BRD4 as a pivotal regulator in maintaining genomic integrity under replication stress.

    中文摘要 I SUMMARY II INTRODUCTION III MATERIALS AND METHODS IV RESULTS AND DISCUSSION VII CONCLUTION IX 誌謝 X 圖目錄 XIV 縮寫表 XV 壹、緒論 第一節 前言 1-1 DNA損傷使複製叉停滯 1 1-2複製後 DNA 修復 (Post-Replication DNA Repair)機制 2 1-3停滯的複製叉形成反向結構 3 1-4反向複製叉的重新啟動與保護機制 3 1-5烷基化劑造成細胞單股斷裂(Single Strand Break,SSB)4 1-6同源重組修復(Homologous Recombination Repair,HR)機制 5 1-7 PARP1抑制劑對於HR缺陷細胞有合成致死作用 6 1-8溴結構域和額末端(Bromodomain and Extra-Terminal,BET)功能 7 1-9 BET蛋白在HR修復路徑中參與作用 8 1-10 BRD4調控複製叉的複製速度 9 1-11 BET抑制劑在人類癌症中的運用 10 第二節 研究動機與目的 11 貳、實驗材料與方法 第一節 實驗材料 2-1-1 人類細胞株 12 2-1-2 shRNA序列 12 第二節 實驗方法 2-2-1 細胞解凍(Thawing Frozen Cells) 13 2-2-2 細胞繼代培養(Cell Culture)13 2-2-3 凍細胞(Freezing Cells)14 2-2-4 慢病毒製備(Lentivirus Production)14 2-2-5 慢病毒轉染(Lentivirus Infection)15 2-2-6 細胞存活率(Cell Survival)16 2-2-7 蛋白質萃取(Cell Lysate Extract)16 2-2-8 西方墨點法(Western Blot) 17 2-2-9 免疫螢光(Immunofluorescence) 19 2-2-10 DNA combing 20 2-2-11 Recombination Reporter Assay ( DR-GFP ) 22 2-2-12 Gap filing 25 參、結果 3-1 Mivebresib 和Olaparib對 T24 細胞有合成致死作用 28 3-2 Mivebresib (BETi)下調HR相關蛋白 28 3-3不同 shBRD4 慢病毒序列感染 T24 細胞的效率 29 3-4 降低BRD4蛋白質增加細胞對Olaparib藥物敏感性 30 3-5降低 BRD4 蛋白質使 HR相關蛋白下調 30 3-6降低 BRD4 蛋白質會影響停滯複製叉的保護 31 3-7在複製壓力下 BRD4 缺陷細胞對DNA損傷修復能力降低 32 3-8 在複製壓力下BRD4 缺陷細胞造成複製期暴露出單股DNA 33 肆、討論 35 伍、參考資料 38

    1. Gaillard, H., T. García-Muse, and A. Aguilera, Replication stress and cancer. Nat Rev Cancer, 2015. 15(5): p. 276-89.
    2. Federica, G., C. Michela, and D. Giovanna, Targeting the DNA damage response in cancer. MedComm (2020), 2024. 5(11): p. e788.
    3. Kim, H., et al., Combining PARP with ATR inhibition overcomes PARP inhibitor and platinum resistance in ovarian cancer models. Nat Commun, 2020. 11(1): p. 3726.
    4. Okabe, S., et al., WEE1 and PARP-1 play critical roles in myelodysplastic syndrome and acute myeloid leukemia treatment. Cancer Cell Int, 2023. 23(1): p. 128.
    5. Yang, H., et al., Beyond DNA Repair: DNA-PKcs in Tumor Metastasis, Metabolism and Immunity. Cancers (Basel), 2020. 12(11).
    6. Qian, J., et al., Advancing cancer therapy: new frontiers in targeting DNA damage response. Front Pharmacol, 2024. 15: p. 1474337.
    7. Basu, B., et al., Targeting the DNA damage response in oncology: past, present and future perspectives. Curr Opin Oncol, 2012. 24(3): p. 316-24.
    8. Burgers, P.M., Polymerase dynamics at the eukaryotic DNA replication fork. J Biol Chem, 2009. 284(7): p. 4041-5.
    9. Gao, Y., et al., Mechanisms of Post-Replication DNA Repair. Genes (Basel), 2017. 8(2).
    10. Sale, J.E., Translesion DNA synthesis and mutagenesis in eukaryotes. Cold Spring Harb Perspect Biol, 2013. 5(3): p. a012708.
    11. Atkinson, J. and P. McGlynn, Replication fork reversal and the maintenance of genome stability. Nucleic Acids Res, 2009. 37(11): p. 3475-92.
    12. Neelsen, K.J. and M. Lopes, Replication fork reversal in eukaryotes: from dead end to dynamic response. Nat Rev Mol Cell Biol, 2015. 16(4): p. 207-20.
    13. Berti, M., et al., Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nat Struct Mol Biol, 2013. 20(3): p. 347-54.
    14. Qiu, S., et al., Replication Fork Reversal and Protection. Front Cell Dev Biol, 2021. 9: p. 670392.
    15. Ho, Y.C., et al., PARP1 recruits DNA translocases to restrain DNA replication and facilitate DNA repair. PLoS Genet, 2022. 18(12): p. e1010545.
    16. Shiu, J.L., et al., The HLTF-PARP1 interaction in the progression and stability of damaged replication forks caused by methyl methanesulfonate. Oncogenesis, 2020. 9(12): p. 104.
    17. Davies, A.A., et al., Activation of ubiquitin-dependent DNA damage bypass is mediated by replication protein a. Mol Cell, 2008. 29(5): p. 625-36.
    18. Kile, A.C., et al., HLTF's Ancient HIRAN Domain Binds 3' DNA Ends to Drive Replication Fork Reversal. Mol Cell, 2015. 58(6): p. 1090-100.
    19. Bétous, R., et al., Substrate-selective repair and restart of replication forks by DNA translocases. Cell Rep, 2013. 3(6): p. 1958-69.
    20. Bhat, K.P. and D. Cortez, RPA and RAD51: fork reversal, fork protection, and genome stability. Nat Struct Mol Biol, 2018. 25(6): p. 446-453.
    21. Mijic, S., et al., Replication fork reversal triggers fork degradation in BRCA2-defective cells. Nat Commun, 2017. 8(1): p. 859.
    22. Schlacher, K., et al., Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell, 2011. 145(4): p. 529-42.
    23. Nakanishi, K., et al., Homology-directed Fanconi anemia pathway cross-link repair is dependent on DNA replication. Nat Struct Mol Biol, 2011. 18(4): p. 500-3.
    24. Schlacher, K., H. Wu, and M. Jasin, A distinct replication fork protection pathway connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2. Cancer Cell, 2012. 22(1): p. 106-16.
    25. Sato, K., et al., FANCI-FANCD2 stabilizes the RAD51-DNA complex by binding RAD51 and protects the 5'-DNA end. Nucleic Acids Res, 2016. 44(22): p. 10758-10771.
    26. Wu, C.K., et al., APLF facilitates interstrand DNA crosslink repair and replication fork protection to confer cisplatin resistance. Nucleic Acids Res, 2024. 52(10): p. 5676-5697.
    27. Meng, L., et al., Nucleostemin deletion reveals an essential mechanism that maintains the genomic stability of stem and progenitor cells. Proc Natl Acad Sci U S A, 2013. 110(28): p. 11415-20.
    28. Lebdy, R., et al., The nucleolar protein GNL3 prevents resection of stalled replication forks. EMBO Rep, 2023. 24(12): p. e57585.
    29. Brown, E.T. and J.T. Holt, Rad51 overexpression rescues radiation resistance in BRCA2-defective cancer cells. Mol Carcinog, 2009. 48(2): p. 105-9.
    30. Hegde, M.L., T.K. Hazra, and S. Mitra, Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res, 2008. 18(1): p. 27-47.
    31. Spiegel, J.O., B. Van Houten, and J.D. Durrant, PARP1: Structural insights and pharmacological targets for inhibition. DNA Repair (Amst), 2021. 103: p. 103125.
    32. Ensminger, M., et al., DNA breaks and chromosomal aberrations arise when replication meets base excision repair. J Cell Biol, 2014. 206(1): p. 29-43.
    33. Tan, J., et al., Double-strand DNA break repair: molecular mechanisms and therapeutic targets. MedComm (2020), 2023. 4(5): p. e388.
    34. Ackerson, S.M., et al., To Join or Not to Join: Decision Points Along the Pathway to Double-Strand Break Repair vs. Chromosome End Protection. Front Cell Dev Biol, 2021. 9: p. 708763.
    35. Scully, R., et al., DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol, 2019. 20(11): p. 698-714.
    36. Goulooze, S.C., A.F. Cohen, and R. Rissmann, Olaparib. Br J Clin Pharmacol, 2016. 81(1): p. 171-3.
    37. Piombino, C., et al., Homologous Recombination Repair Deficiency in Metastatic Prostate Cancer: New Therapeutic Opportunities. Int J Mol Sci, 2024. 25(9).
    38. Bryant, H.E., et al., Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature, 2005. 434(7035): p. 913-7.
    39. Farmer, H., et al., Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature, 2005. 434(7035): p. 917-21.
    40. Yang, L., et al., Repression of BET activity sensitizes homologous recombination-proficient cancers to PARP inhibition. Sci Transl Med, 2017. 9(400).
    41. Inoue, T., et al., Roles of the PARP Inhibitor in BRCA1 and BRCA2 Pathogenic Mutated Metastatic Prostate Cancer: Direct Functions and Modification of the Tumor Microenvironment. Cancers (Basel), 2023. 15(9).
    42. Carter, B. and K. Zhao, The epigenetic basis of cellular heterogeneity. Nat Rev Genet, 2021. 22(4): p. 235-250.
    43. Dawson, M.A. and T. Kouzarides, Cancer epigenetics: from mechanism to therapy. cell, 2012. 150(1): p. 12-27.
    44. Guo, J., Q. Zheng, and Y. Peng, BET proteins: Biological functions and therapeutic interventions. Pharmacol Ther, 2023. 243: p. 108354.
    45. Taniguchi, Y., The Bromodomain and Extra-Terminal Domain (BET) Family: Functional Anatomy of BET Paralogous Proteins. Int J Mol Sci, 2016. 17(11).
    46. Baranello, L., et al., RNA Polymerase II Regulates Topoisomerase 1 Activity to Favor Efficient Transcription. Cell, 2016. 165(2): p. 357-71.
    47. Wang, Z.Q., et al., Bromodomain and extraterminal (BET) proteins: biological functions, diseases, and targeted therapy. Signal Transduct Target Ther, 2023. 8(1): p. 420.
    48. Shorstova, T., W.D. Foulkes, and M. Witcher, Achieving clinical success with BET inhibitors as anti-cancer agents. Br J Cancer, 2021. 124(9): p. 1478-1490.
    49. Mio, C., et al., BET proteins regulate homologous recombination-mediated DNA repair: BRCAness and implications for cancer therapy. Int J Cancer, 2019. 144(4): p. 755-766.
    50. He, D.D., et al., BRD4 inhibition induces synthetic lethality in ARID2-deficient hepatocellular carcinoma by increasing DNA damage. Oncogene, 2022. 41(10): p. 1397-1409.
    51. Sun, C., et al., BRD4 Inhibition Is Synthetic Lethal with PARP Inhibitors through the Induction of Homologous Recombination Deficiency. Cancer Cell, 2018. 33(3): p. 401-416.e8.
    52. Barrows, J.K., et al., BRD4 promotes resection and homology-directed repair of DNA double-strand breaks. Nat Commun, 2022. 13(1): p. 3016.
    53. Zhang, J., et al., BRD4 facilitates replication stress-induced DNA damage response. Oncogene, 2018. 37(28): p. 3763-3777.
    54. Lee, K.Y., et al., ATAD5 regulates the lifespan of DNA replication factories by modulating PCNA level on the chromatin. J Cell Biol, 2013. 200(1): p. 31-44.
    55. Kang, M.S., et al., PCNA Unloading Is Negatively Regulated by BET Proteins. Cell Rep, 2019. 29(13): p. 4632-4645.e5.
    56. Wessel, S.R., et al., Functional Analysis of the Replication Fork Proteome Identifies BET Proteins as PCNA Regulators. Cell Rep, 2019. 28(13): p. 3497-3509.e4.
    57. Li, X., et al., Targeting radioresistance and replication fork stability in prostate cancer. JCI Insight, 2022. 7(9).
    58. Lam, F.C., et al., BRD4 prevents the accumulation of R-loops and protects against transcription–replication collision events and DNA damage. Nature Communications, 2020. 11(1): p. 4083.
    59. Kim, J.J., et al., Systematic bromodomain protein screens identify homologous recombination and R-loop suppression pathways involved in genome integrity. Genes Dev, 2019. 33(23-24): p. 1751-1774.
    60. Baylin, S.B. and P.A. Jones, A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer, 2011. 11(10): p. 726-34.
    61. Struhl, K., Histone acetylation and transcriptional regulatory mechanisms. Genes Dev, 1998. 12(5): p. 599-606.
    62. Marks, P. and W.S. Xu, Histone deacetylase inhibitors: Potential in cancer therapy. Journal of cellular biochemistry, 2009. 107(4): p. 600-608.
    63. Lovén, J., et al., Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell, 2013. 153(2): p. 320-34.
    64. Donati, B., E. Lorenzini, and A. Ciarrocchi, BRD4 and Cancer: going beyond transcriptional regulation. Mol Cancer, 2018. 17(1): p. 164.
    65. Baratta, M.G., et al., An in-tumor genetic screen reveals that the BET bromodomain protein, BRD4, is a potential therapeutic target in ovarian carcinoma. Proc Natl Acad Sci U S A, 2015. 112(1): p. 232-7.
    66. Wu, X., et al., Inhibition of BRD4 Suppresses Cell Proliferation and Induces Apoptosis in Renal Cell Carcinoma. Cell Physiol Biochem, 2017. 41(5): p. 1947-1956.
    67. Bui, M.H., et al., Preclinical Characterization of BET Family Bromodomain Inhibitor ABBV-075 Suggests Combination Therapeutic Strategies. Cancer Res, 2017. 77(11): p. 2976-2989.
    68. Borthakur, G., et al., A phase 1 study of the pan-bromodomain and extraterminal inhibitor mivebresib (ABBV-075) alone or in combination with venetoclax in patients with relapsed/refractory acute myeloid leukemia. Cancer, 2021. 127(16): p. 2943-2953.
    69. Piha-Paul, S.A., et al., First-in-Human Study of Mivebresib (ABBV-075), an Oral Pan-Inhibitor of Bromodomain and Extra Terminal Proteins, in Patients with Relapsed/Refractory Solid Tumors. Clin Cancer Res, 2019. 25(21): p. 6309-6319.
    70. Lam, L.T., et al., Vulnerability of Small-Cell Lung Cancer to Apoptosis Induced by the Combination of BET Bromodomain Proteins and BCL2 Inhibitors. Mol Cancer Ther, 2017. 16(8): p. 1511-1520.
    71. Faivre, E.J., et al., Exploitation of Castration-Resistant Prostate Cancer Transcription Factor Dependencies by the Novel BET Inhibitor ABBV-075. Mol Cancer Res, 2017. 15(1): p. 35-44.
    72. Wilson, A.J., et al., The BET inhibitor INCB054329 reduces homologous recombination efficiency and augments PARP inhibitor activity in ovarian cancer. Gynecol Oncol, 2018. 149(3): p. 575-584.
    73. Karakashev, S., et al., BET Bromodomain Inhibition Synergizes with PARP Inhibitor in Epithelial Ovarian Cancer. Cell Rep, 2017. 21(12): p. 3398-3405.
    74. Zellweger, R., et al., Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells. J Cell Biol, 2015. 208(5): p. 563-79.

    無法下載圖示 校內:2030-02-06公開
    校外:2030-02-06公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE