簡易檢索 / 詳目顯示

研究生: 陳建名
Chen, Chien-Ming
論文名稱: 圓柱工件端銑之尺寸與幾何誤差解析模式
An analytical Model for Dimensional and Geometrical Error in the Milling of a Cylindrical Part
指導教授: 王俊志
Wang, J-J Junz
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 50
中文關鍵詞: 銑削製程圓柱加工幾何誤差尺寸誤差製程誤差
外文關鍵詞: milling process, machining of cylinder, geometrical error, dimension error, process error
相關次數: 點閱:97下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銑削製程為工業界應用廣泛的加工方式之一,其中循圓端銑常出現在各式零組件或模具的加工製程中,其加工應用範圍廣,如何有效掌握與預測加工件尺寸誤差之能力極為重要。
    本論文針對圓柱型工件,建立工件之尺寸與幾何誤差誤差解析模式。此解析模式主要可分為兩部分,首先為將銑削力捲積模式,應用於計算刀具與工件之受銑削力撓曲,建立準靜態與穩定切削下之刀具與工件受瞬時銑削力之撓曲解析模式;其特點為能了解刀具與工件幾何、切削條件等各製程參數,對尺寸誤差之影響;另外一部分為建立刀具偏擺於循圓銑削時,在不同循圓位置與切削高度上對於工件尺寸誤差影響之解析式,預測工件尺寸誤差與其分布情形。實驗結果顯示,本文提出之工件尺寸預測模式,能有效掌握循圓端銑圓柱工件之尺寸與幾何誤差。

    The milling process has been widely used in industry. Circular milling is one of the frequently used operation to machine precision parts and mold. Consequently, a general method that can predict the dimension error is needed.

    This thesis presents an analytical model applying to predict the dimension and geometrical error of a cylindrical part in circular milling process. The analytical model composes of two factors. One is the force induced deflection of cutter and machining part. The other is the tool runout which affects the dimension and geometrical error of a machining part. The proposed analytical model give an insight into the influence of geometry of cutter and workpiece, cutting condition and tool runout on the dimension error. This model is validated by cylinder machining experiments. The measurement results show good agreement with the prediction .

    摘要…………………………………………………………………………I Abstract……………………………………………………………………II 致謝…………………………………………………………………………III 總目錄………………………………………………………………IV 表目錄……………………………………………………………VI 圖目錄……………………………………………………………………VII 符號表…………………………………………………………………IX 第一章 緒論……………………………………………………………1 1.1 前言……………………………………………………………1 1.2 文獻回顧………………………………………………………1 1.3 研究動機與目的………………………………………………3 1.4 研究範疇與架構………………………………………………3 第二章 銑削力分析模式………………………………………………5 2.1 前言………………………………………………………………5 2.2 銑削座標系統……………………………………………………5 2.3 角度域的銑削力……………………………………………9 2.3.1 基本切削函數…………………………………………9 2.3.2 屑寬密度函數…………………………………………10 2.3.3 刀刃序列函數………………………………………………12 2.3.4 角度域總銑削力……………………………………………12 第三章 圓柱工件端銑之尺寸與幾何誤差解析模式…………………15 3.1 加工件尺寸誤差模式之建立………………………………15 3.2 刀具與工件受力撓曲…………………………………………16 3.2.1力矩撓曲模式與力量中心…………………………16 3.2.2 刀具撓曲模式………………………………………………20 3.2.3 工件撓曲模式………………………………………………21 3.2.4 刀具與工件受力撓曲分析…………………………………22 3.3 刀具偏擺分析………………………………………25 第四章 實驗方法與結果討論…………………………………………28 4.1 前言……………………………………………………………28 4.2 實驗材料……………………………………………………28 4.3 實驗設備與儀器……………………………………………28 4.3.1 銑削使用之銑床規格………………………………………28 4.3.2 實驗儀器及其規格…………………………………………29 4.4 實驗方法說明………………………………………………29 4.4.1 儀器架設……………………………………………………29 4.4.2 實驗前準備工作……………………………………………30 4.5 刀具與工件有效長度之量測………………………………30 4.6 刀具偏擺之量測……………………………………………32 4.7 實驗設置………………………………………………………33 4.8 加工件尺寸誤差之量測……………………………………34 4.9 工件尺寸誤差分析……………………………………35 4.9.1 量測值與預測值(僅考慮撓曲)比較………………………35 4.9.2 量測值與預測值(考慮撓曲與刀具偏擺)比較………38 第五章 結論與建議……………………………………………………42 5.1 結論…………………………………………………………42 5.2建議……………………………………………………………42 參考文獻……………………………………………………………………44 附錄…………………………………………………………………………46 自述…………………………………………………………………………50

    [1]Martellotti, M. E., “An Analysis of the Milling Process,” Transaction of ASME, Vol. 63, pp.677-700, 1941.
    [2]Koenigsberger, F., and Sabberwal, A. J. P., “An investigation into the cutting force pulsations during milling operations,” International journal of machine tool design and research, Vol. 1, pp. 15-33, 1961.
    [3]Tlusty, J. and MacNeil, P., “Dynamics of Cutting Forces in End milling,” CIRP annals, Vol. 24, pp. 21-25, 1975.
    [4]Kline, W. A., DeVor, R. E. and Shareef, I. A., “The prediction of surface accuracy in end milling,” ASME Journal of Engineering for Industry, Vol. 104, pp. 272-278, 1982.
    [5]Smith, S., and Tlusty, J., “An overview of modeling and simulation of the milling process,” ASME Journal of Engineering for Industry, Vol. 113, pp. 169-175, 1991.
    [6]Budak, E. and Altintas, Y., “Peripheral milling conditions for improved dimensional accuracy,” International Journal of Machine Tools & Manufacture, Vol. 34, pp. 907-918, 1994.
    [7]Wang, J.-J., Liang, S. Y. and Book, J. W., “Convolution analysis of Milling Force Pulsation,” ASME Journal of Engineering for Industry, Vol. 116, pp. 17-25, 1994.
    [8]Liang, S. Y. and Wang, J.-J., “Milling force convolution modeling for identification of cutter axis offset” International Journal of Machine Tools & Manufacture, Vol. 34, pp. 1177-1190, 1994.
    [9]Yun, W. S. and Ko, J. H., “Development of virtual machining system, part 2: prediction and analysis of a machined surface error,” International Journal of Machine Tools & Manufacture, ” Vol. 42, pp. 1607-1615, 2002.
    [10]Kardes, N. and Altintas, Y. “Mechanics and dynamics of the circular milling process,” Transaction of ASME, Vol. 129, pp.21-31, 2007.
    [11]Islam, M. N., Lee, H. U. and Cho, D. W. “Prediction and analysis of size tolerances achievable in peripheral end milling” International Journal of advance manufacture technology, ”Vol. 39, pp. 129-141, 2008.
    [12]Schmitz, T. L., Ziegert, J. C., Canning, J. S., and Zapata, R., “Case study : Acomparison of error sources in high-speed milling,” Precision Engineering, Vol. 32, pp. 126-133, 2008.
    [13]Bera, T. C., Desai, K. A., and RAO, P. V. M., “Error compensation in flexible end milling of tubular geometries” Journal of Materials Process Technolgy, Vol211, pp.24-34, 2011.
    [14]彭仕良, 撓件銑削加工尺寸誤差及自動補償之研究,國立成功大學機械工程學系碩士論文, 1996。
    [15]彭啟明, 銑削動態力與工具機空間誤差對加工件尺寸誤差之影響, 國立成功大學機械工程學系碩士論文, 2009。
    [16]李育儒, 銑削製程工件形狀幾何變異分析, 國立成功大學機械工程學系碩士論文, 2010。
    [17]江浩寧, 加工系統誤差分析及其在銑削加工上策略之應用,國立成功大學機械工程學系博士論文, 2011。

    下載圖示 校內:2013-09-01公開
    校外:2013-09-01公開
    QR CODE