簡易檢索 / 詳目顯示

研究生: 莊峻瑋
Zhuang, Jun-Wei
論文名稱: 利用臨場高溫同步輻射X光研究不同鹼度下燒結礦於燒結過程中的礦相變化
Investigation of Phase transformation in Sinter Ore with Different Basicities during sintering process Using In-situ High-temperature Synchrotron X-ray Technique
指導教授: 劉禹辰
Liu, Yu-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 151
中文關鍵詞: 同步輻射燒結礦SFCA鹼度臨場X光繞射
外文關鍵詞: High-Silica Iron Ore, SFCA (Silico-Ferrite of Calcium and Aluminum), In-situ Synchrotron HT-X-ray Diffraction, Low-Grade Iron Ore Utilization
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著高品位鐵礦資源逐漸枯竭,低品位鐵礦石(含高SiO₂)逐漸成為煉鋼原料發展主流。然而,高SiO₂ 成分於燒結過程中易與CaO生成穩定的矽酸鈣類礦物(C₂S、CS),導致作為結合相之SFCA(Silico-Ferrite of Calcium and Aluminum)生成受限,不僅降低燒結礦的強度與還原性,也影響高爐煉鐵效率與碳排放控制。現有文獻對此類高SiO₂ 系統礦相的轉變行為認知有限,特別是在實際燒結製程中升溫、持溫與冷卻各階段的液相生成與轉變機制,缺乏即時、量化之實驗證據。本研究針對上述問題,以「改善高 SiO₂ 含量之燒結礦條件下 SFCA 生成受限」為目標,採用同步輻射臨場高溫X光繞射(in-situ synchrotron HT- X-ray Diffraction)技術,結合Rietveld精修與熱力學相圖計算,系統探討不同SiO₂ 含量與鹼度條件下鐵礦樣品的燒結礦相演化行為,並進一步設計熱處理製程改質策略。研究發現,在高SiO₂ 與鹼度2條件下,SFCA含量僅16.1 wt%,且出現大量未反應的SFCA-I與矽酸鈣類中間相,顯示高SiO₂ 條件易造成反應資源分散與反應不完全。透過延長高溫持溫時間(1250 °C,30分鐘),可顯著促進SFCA-I向SFCA的轉化,使SFCA含量提升至34.2 wt%,為原樣的2倍。本研究以同步輻射技術即時觀測燒結反應歷程,釐清高SiO₂ 條件下礦相轉化受阻的機理,並提出具體可行之製程改質策略。研究結果有助於提升低品位鐵礦石在燒結製程中的利用效率與結合相品質,進一步改善高SiO₂ 鐵礦於工業應用中的強度不足與還原性不穩定等問題。

    This study investigates the formation of SFCA (Silico-Ferrite of Calcium and Aluminum) during the sintering of high-silica (high SiO₂) iron ores. Excess SiO₂ reacts with CaO to form stable silicates (C₂S, CS), reducing CaO availability for SFCA formation and thereby weakening the bonding strength and reducibility of the sinter. Using in-situ synchrotron high-temperature X-ray diffraction (HT-X-ray Diffraction), Rietveld refinement, and thermal profile control, the phase evolution—particularly the transformation of SFCA-I to SFCA—was examined in real time. Results showed that under short isothermal holding, SFCA formation was kinetically hindered, with significant retention of intermediate phases. Extending the holding time at 1250 °C to 30 minutes enhanced diffusion and reaction completeness, increasing SFCA content from 16.1 wt.% to 34.2 wt.%. This confirms that thermal profile optimization can effectively overcome kinetic limitations. The study clarifies the reaction bottlenecks in high-SiO₂ systems and proposes a practical thermal adjustment strategy. The findings offer valuable insights for improving sinter quality while supporting the steel industry's efforts toward raw material diversification, low-carbon processing, and sustainability.

    第一章 前言1 1.1 鋼鐵業淨零碳排放1 1.2 不同品位鐵礦石3 1.3 高爐與鐵礦應用4 第二章 文獻回顧6 2.1 燒結條件6 2.1.1 升溫速率6 2.1.2 最高溫度和持溫時間7 2.1.3 冷卻速率10 2.1.4 燒結氣氛(氧分壓)13 2.1.5 成分組成15 2.1.6 高矽低品位鐵礦石對燒結行為之影響19 2.2 燒結過程所出現之礦相20 2.2.1 燒結礦礦相結構20 2.2.2 液相形成21 2.2.3 燒結反應順序23 2.2.4 燒結過程中SFCA的生成25 2.3 同步輻射X光32 2.4 現有問題與挑戰37 第三章 研究方法40 3.1 實驗樣品40 3.1.1 成分組成40 3.1.2 升降溫曲線41 3.1.1 實驗氣氛43 3.2 實驗樣品製備43 3.2.1 配粉43 3.2.2 混粉45 3.2.3 壓錠48 3.3 實驗設備50 3.3.1 同步輻射加速器50 3.3.2 臨場高溫爐52 3.3.3 X光偵檢器54 3.3.4 掃描式電子顯微鏡55 3.4 模擬方法57 3.4.1 計算相圖57 3.4.2 Rietveld 精修方法57 3.4.3 X-ray Diffraction背景值積分方法59 3.5 分析軟體59 3.5.1 OriginPro 201659 3.5.2 GSAS-II60 3.5.3 Transmission Electron Microscope分析方法(CrysTBox)61 第四章 結果與討論62 4.1 鹼度2.0(低矽)與(高矽)臨場升降溫礦相與礦相比例變化62 4.1.1 鹼度2.0(高低矽)升降溫臨場礦相2θ-溫度等值圖62 4.1.2 鹼度2.0(低矽)臨場升降溫、冷卻至室溫礦相變化65 4.1.3 鹼度2.0(高矽)臨場升降溫、冷卻至室溫礦相變化68 4.1.4 鹼度2.0低矽樣品的礦相比例變化分析71 4.1.5 鹼度2.0高矽樣品的礦相比例變化分析73 4.1.6 鹼度2.0高低矽樣品 Rietveld 精修結果74 4.1.7 鹼度2.0低矽樣品 SEM 結果82 4.1.8 鹼度2.0高矽樣品 SEM 結果84 4.2 鹼度4.0樣品臨場升降溫礦相與礦相比例變化86 4.2.1 升降溫臨場礦相2θ-溫度等值圖86 4.2.2 鹼度4.0臨場升降溫、冷卻至室溫礦相變化88 4.2.3 鹼度4.0樣品的礦相比例變化分析91 4.2.4 鹼度 4.0 樣品 Rietveld 精修結果93 4.2.5 鹼度4.0樣品 SEM 結果97 4.3 鹼度2.0高矽樣品於不同升降溫曲線臨場礦相與礦相比例變化98 4.3.1 升降溫臨場礦相2θ-溫度等值圖98 4.3.2 鹼度2.0(高矽)升溫曲線B、C臨場升降溫、冷卻至室溫礦相變化101 4.3.3 鹼度2.0(高矽)升溫曲線B、C的臨場礦相比例變化分析101 4.3.4 鹼度2.0高矽樣品升溫曲線B Rietveld 精修結果105 4.3.5 鹼度2.0高矽樣品升溫曲線C Rietveld 精修結果109 4.3.6 鹼度2.0(高矽)升溫曲線B SEM結果114 4.3.7 鹼度2.0(高矽)升溫曲線C SEM結果116 4.4 不同鹼度樣品冷卻至室溫含量差異的影響118 4.4.1 針狀SFCA-I 僅於高鹼度樣品生成之討論118 4.4.2 矽含量與鹼度對SFCA礦相演化與改質行為之影響119 第五章 結論126 Reference 128

    1. Torres-Morales, E., A matter of transparency: 2024 insights on the steel industry’s evolving commitments to reach Net Zero by 2050. 2024.
    2. 林雨璇, 碳抵換機制中的私權威: 以 Verified Carbon Standard 和 Gold Standard 為例. 2024, National Taiwan University.
    3. Lin, Y.-W., The Study on Net Zero Transformation in Taiwan's Electronic Manufacturing Industry-Take a Semiconductor Manufacturing Company as an Example. 2023, National Yang Ming Chiao Tung University.
    4. Geerdes, M., R. Chaigneau, and O. Lingiardi, Modern blast furnace ironmaking: an introduction (2020). 2020: Ios Press.
    5. Muwanguzi, A.J., et al., Characterization of chemical composition and microstructure of natural iron ore from Muko deposits. International Scholarly Research Notices, 2012. 2012(1): p. 174803.
    6. Goldring, D., Iron ore categorisation for the iron and steel industry. Applied Earth Science, 2003. 112(1): p. 5-17.
    7. Clout, J. and J. Manuel, Mineralogical, chemical, and physical metallurgical characteristics of iron ore, in Iron Ore. 2022, Elsevier. p. 59-108.
    8. Pal, J., et al., Development of pellet-sinter composite agglomerate for blast furnace. ISIJ international, 2014. 54(3): p. 620-627.
    9. 網站編輯. 鐵成本降低與高爐產量的關係. 2021; Available from: https://zh-tw.diecastingcompany.com/helpful-articles/the-relationship-between-iron-cost-reduction-and-blast-furnace-production.
    10. Maruoka, D., et al. Influence of crystal structure and chemical composition of silico-ferrite of calcium and aluminum on its reducibility. in Proceedings of the 8th International Congress on Science and Technology of Ironmaking, Vienna, Austria. 2018.
    11. Dawson, P., J. Ostwald, and K. Hayes. The influence of the sintering temperature profile on the mineralogy and properties of iron ore sinters. in AIMM Bull. Proc. 1984.
    12. Liu, D., G. Evans, and C.E. Loo, Iron ore sinter structure development under realistic thermal conditions. Chemical Engineering Research and Design, 2018. 130: p. 129-137.
    13. Liu, D. and C.E. Loo, Importance of melt generation and properties in iron ore sintering. ISIJ International, 2016. 56(4): p. 527-536.
    14. satyendra, Factors affecting Coke rate in a Blast Furnace. 2014.
    15. Scarlett, N.V., et al., Reaction sequences in the formation of silico-ferrites of calcium and aluminum in iron ore sinter. Metallurgical and materials transactions B, 2004. 35: p. 929-936.
    16. Nicol, S., et al., A review of the chemistry, structure and formation conditions of silico-ferrite of calcium and aluminum (‘SFCA’) phases. ISIJ International, 2018. 58(12): p. 2157-2172.
    17. Hsieh, L.-H. and W. JA, Sintering conditions for simulating the formation of mineral phases in industrial iron ore sinter. ISIJ International, 1989. 29(1): p. 24-32.
    18. Harvey, T., et al., Effect of temperature, time, and cooling rate on the mineralogy, morphology, and reducibility of iron ore sinter analogues. Jom, 2021. 73: p. 345-355.
    19. Murao, R. and M. Kimura, Investigation on reaction schemes of iron ore sintering process by high temperature in-situ x-ray diffraction and micro-texture observation. Nippon steel & sumitomo metal technical report, 2018(118): p. 59-64.
    20. Chen, X., et al., Mineralization characteristics of iron ore sinter and the effects of cooling rate on mineral phase structure. ISIJ International, 2023. 63(2): p. 261-270.
    21. Pownceby, M. and J. Clout, Phase relations in the Fe-rich part of the system Fe2O3 (-Fe3O4)-CaO-SiO2 at 1240-1300° C and oxygen partial pressure of 5× 10-3 atm: implications for iron ore sinter. Mineral Processing and Extractive Metallurgy, 2000. 109(1): p. 36-48.
    22. Wang, Z., et al., Effects of sintering materials and gas conditions on formation of silico-ferrites of calcium and aluminium during iron ore sintering. ISIJ International, 2016. 56(7): p. 1138-1147.
    23. Gan, M., et al., High temperature mineralization behavior of mixtures during iron ore sintering and optimizing methods. ISIJ international, 2015. 55(4): p. 742-750.
    24. Fan, X., A Review of Calcium Ferrite in Sintering of Iron Ore and The Effect of Gangue Composition on Its Formation. 2023.
    25. Liao, F. and X.-M. Guo, The effects of Al2O3 and SiO2 on the formation process of silico-ferrite of calcium and aluminum (SFCA) by solid-state reactions. Minerals, 2019. 9(2): p. 101.
    26. Fernández-González, D., et al., Iron ore sintering: Process. Mineral Processing and Extractive Metallurgy Review, 2017. 38(4): p. 215-227.
    27. Lv, X., et al., Behavior of liquid phase formation during iron ores sintering. ISIJ international, 2011. 51(5): p. 722-727.
    28. Blake, R., et al., Refinement of the hematite structure. American Mineralogist: Journal of Earth and Planetary Materials, 1966. 51(1-2): p. 123-129.
    29. Shen, C., et al., Phase stability study of La1. 2Ca1. 8Mn2O7. Materials research bulletin, 2001. 36(5-6): p. 1139-1148.
    30. Petch, H., The hydrogen positions in portlandite, Ca (OH) 2, as indicated by the electron distribution. Acta Crystallographica, 1961. 14(9): p. 950-957.
    31. d'Amour, H., W. Denner, and H. Schulz, Structure determination of α-quartz up to 68 x 108 Pa. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1979. 35(3): p. 550-555.
    32. Guensburg, T.E., Echinodermata of the Middle Ordovician Lebanon Limestone, central Tennessee. 1982: University of Illinois at Urbana-Champaign.
    33. Vanpeteghem, C.B., et al., The effect of oxygen vacancies and aluminium substitution on the high-pressure properties of brownmillerite-structured Ca 2 Fe 2− x Al x O 5. Physics and Chemistry of Minerals, 2008. 35: p. 493-504.
    34. Zouari, S., et al., Structural and magnetic properties of the (Ca1− xNax)(Fe2− xTix) O4 solid solution (0≤ x≤ 1). Journal of alloys and compounds, 2008. 452(2): p. 234-240.
    35. Hesse, K.-F., Refinement of the crystal structure of wollastonite-2M (parawollastonite). Zeitschrift für Kristallographie-Crystalline Materials, 1984. 168(1-4): p. 93-98.
    36. Jost, K., B. Ziemer, and R. Seydel, Redetermination of the structure of β-dicalcium silicate. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1977. 33(6): p. 1696-1700.
    37. Webster, N.A., M.I. Pownceby, and N.C. Wilson, Exploring the composition and structure of triclinic SFCA-I. ISIJ International, 2022. 62(8): p. 1618-1623.
    38. HAMILTON, J.G., et al., The crystal structure and crystal chemistry of Ca2. 3Mg0. 8Al1. 5Si1. 1Fe8. 3O20 (SFCA): solid solution limits and selected phase relationships of SFCA in the SiO2-FeO3-CaO (-Al2O3) system. Neues Jahrbuch für Mineralogie. Abhandlungen, 1989. 161(1): p. 1-26.
    39. Fjellvåg, H., et al., On the crystallographic and magnetic structures of nearly stoichiometric iron monoxide. Journal of Solid State Chemistry, 1996. 124(1): p. 52-57.
    40. Millon, E., et al., Structure cristalline du ferrite hemicalcique CaFe4O7. Materials research bulletin, 1986. 21(8): p. 985-994.
    41. Weber, H.-P., Ferrosilite III, the high-temperature polymorph of FeSiO3. Crystal Structure Communications, 1983. 39(1): p. 1-3.
    42. Kieffer, W.F., CRC Handbook of Chemistry and Physics. 1975, ACS Publications.
    43. Webster, N.A., et al., Fundamentals of silico-ferrite of calcium and aluminum (SFCA) and SFCA-I iron ore sinter bonding phase formation: effects of CaO: SiO 2 ratio. Metallurgical and Materials Transactions B, 2014. 45: p. 2097-2105.
    44. Mežibrický, R. and M. Fröhlichová, Silico-ferrite of calcium and aluminum characterization by crystal morphology in iron ore sinter microstructure. ISIJ International, 2016. 56(6): p. 1111-1113.
    45. Mumme, W., J. Clout, and R. Gable, The crystal structure of SFCA-I, Ca3. 18 Fe3+ 14.66 Al1. 34 Fe2+ 0.82 O28, a homologue of the aenigmatite structure type, and new crystal structure refinements of ß-CFF, Ca2. 99Fe3+ 14.30 Fe2+ 0.55 O25 and Mg-free SFCA, Ca2. 45Fe3+ 9.04 Al1. 74Fe2+ 0.16 Si0. 6O20. Neues Jahrbuch für Mineralogie-Abhandlungen, 1998. 173(1): p. 93-117.
    46. Zöll, K., et al., Investigations on the crystal structure and the stability field of FCAM-I (Ca 3 MgAl 6 Fe 10 O 28), an iso-structure to SFCA-I. Metallurgical and Materials Transactions B, 2017. 48: p. 2207-2221.
    47. Webster, N.A., et al., Silico-ferrite of calcium and aluminum (SFCA) iron ore sinter bonding phases: new insights into their formation during heating and cooling. Metallurgical and Materials Transactions B, 2012. 43: p. 1344-1357.
    48. Clout, J. and J. Manuel, Fundamental investigations of differences in bonding mechanisms in iron ore sinter formed from magnetite concentrates and hematite ores. Powder technology, 2003. 130(1-3): p. 393-399.
    49. Ishikawa, Y., et al. Improvement of sinter quality based on the mineralogical properties of ores. in Ironmaking Proceedings. 1983.
    50. Umadevi, T., R. Sah, and P. Mahapatra, Influence of sinter basicity (CaO/SiO2) on low and high alumina iron ore sinter quality. Mineral Processing and Extractive Metallurgy, 2014. 123(2): p. 75-85.
    51. Bristow, N. and A. Waters, Role of SFCA in promoting high-temperature reduction properties of iron ore sinters. Transactions of the Institution of Mining and Metallurgy, Section C, 1991. 100.
    52. Cai, B., et al., Comparison between reducibilities of columnar silico-ferrite of calcium and aluminum (SFCA) covered with slag and acicular SFCA with fine pores. ISIJ International, 2018. 58(4): p. 642-651.
    53. Mumme, W., J. Clout, and R. Gable, The crystal structure of SFCA-I, Ca3. 18 Fe3+ 14.66 Al1. 34 Fe2+ 0.82 O28, a homologue of the aenigmatite structure type, and new crystal structure refinements of ß-CFF, Ca2. 99Fe3+ 14.30 Fe2+ 0.55 O25 and Mg-free SFCA, Ca2. 45Fe3+ 9.04 Al1. 74Fe2+ 0.16 Si0. 6O20; The crystal structure of SFCA-I, Ca3. 18 Fe3+ 14.66 Al1. 34 Fe2+ 0.82 O28, a homologue of the aenigmatite structure type, and new crystal structure refinements of ß-CFF, Ca2. 99Fe3+ 14.30 Fe2+ 0.55 O25 and Mg-free SFCA, Ca2. 45Fe3+ 9.04 Al1. 74Fe2+ 0.16 Si0. 6O20. Neues Jarbuch fur Mibneralogie-Abhandlungen, 1998. 173(1): p. 93-117.
    54. Peng, J., et al., Relationship between liquid fluidity of iron ore and generated liquid content during sintering. Metallurgical and Materials Transactions B, 2017. 48: p. 538-544.
    55. Ignácio, I.R., et al., Porosity, mineralogy, strength, and reducibility of sinter analogues from the Fe2O3 (Fe3O4)-CaO-SiO2 (FCS) ternary system. Minerals, 2022. 12(10): p. 1253.
    56. 國家同步輻射研究中心. 同步輻射加速器運行原理.
    57. Scarlett, N.V., et al., In situ X-ray diffraction analysis of iron ore sinter phases. Journal of Applied crystallography, 2004. 37(3): p. 362-368.

    無法下載圖示 校內:2030-08-11公開
    校外:2030-08-11公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE