簡易檢索 / 詳目顯示

研究生: 何承璟
Ho, Chen-Chin
論文名稱: 氯化與硫化及通電循環對電鍍金層Ag-4Pd合金精細導線之打線接合可靠度研究
The Study of Wire Bonding Reliability on Au-Coated Ag-4Pd Alloy Wire After Chlorination, Sulfidation and Power Cycling Test
指導教授: 洪飛義
Hung, Fei-Yi
呂傳盛
Lui, Truan-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 116
中文關鍵詞: 銀合金導線鍍層打線接合氯化硫化通電循環
外文關鍵詞: Silver alloy wire, Coating Au, Wire bonding, Chlorination, Sulfidation, Power cycling
相關次數: 點閱:60下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在金價持續上漲的影響下,電子封裝產業逐漸以銅基與銀基導線作為替代金導線的材料。銅線由於容易氧化與抗腐蝕性較差,並且因硬度較高容易造成接合基板的破壞,降低打線接合可靠度。本研究將Ag-4Pd合金導線(A4P導線)表面電鍍一層厚度約65 nm的金層,製成電鍍金層Ag-4Pd合金導線(ACA4P導線)以有效強化銀線的抗腐蝕性,並藉由氯化、硫化以及通電循環試驗,探討線材在實際應用中的可靠度問題,並分析其劣化機制。
    氯化試驗方面,A4P導線在機械性質和電性方面的劣化程度明顯較ACA4P導線高,並且在長時間氯化後可觀察到A4P線材表面由於氯離子侵蝕晶界而造成的裂紋,最終導致線材沿著晶界發生脆性破裂。在銲點部份,第一銲點在較短的氯化時間便會從接合面處剝離,由橫截面分析可以觀察到第一銲點外緣的鋁基板遭侵蝕掏空導致銲點的脫落;第二銲點則由於下壓力較大,接合較第一銲點緊密,僅有在接合邊緣位置可見鋁墊受氯離子侵蝕產生細小裂縫。
    硫化試驗方面,隨著硫化時間增加,A4P導線表面生成硫化銀的速率明顯高於ACA4P導線,且在電性方面由於A4P導線孔洞的生成,電流有效通道減少造成電阻大幅上升。第一與第二銲點部份,從拉伸破斷的結果可以發現破斷位置皆位於熱影響區內,ACA4P第一銲點因頸部金原子仍分佈於表面,呈現延性破斷;A4P第一銲點則已呈現脆性破斷。第二銲點部份,ACA4P線材端由於表層有鍍金層保護,拉伸破斷位置位於銲點部份;A4P則在線材端受硫化侵蝕的情形較為嚴重,導致長時間處於的富硫環境下會優先從線材端發生破壞。
    通電循環試驗部份,ACA4P導線與A4P導線具有相近的電性與疲勞壽命,因此針對ACA4P導線進行探討。在不同測試電流情況下,ACA4P導線在50%熔斷電流 (Fusing Current, FC)流通時,金原子依然分佈於線材表層,並未擴散至導線內部;提升至70%FC時,可見表面金原子沿著晶界擴散進入線材內部;當電流達90%FC時,金原子已均勻分佈於導線內。不同循環次數下,導線晶粒受通電所誘發之焦耳熱伴隨著循環次數增加而逐漸上升,線徑也逐漸縮小。當晶粒成長至線徑大小時,由於該位置強度較低,在通電循環所引發的循環熱應力下產生熔斷而導致線材斷裂並失效。綜合而論,ACA4P導線能確實提高線材的抗氯化與抗硫化能力,並針對線材與銲點部分解析其氯化與硫化後的劣化機制;通電循環部份則解析不同循環次數下,微觀組織的演變與熔斷機制,並了解表面鍍金層在高密度電流下的擴散路徑,以提供封裝產業應用參考。

    In this study, 65 nm gold layer was electroplated on the surface of Ag-4Pd alloy wire (A4P wire) as Au-coated Ag-4Pd alloy wire (ACA4P wire) to improve the corrosion resistance. Chlorination, sulfidation and power cycling tests were introduced to discuss problems might arise in practical applications as well as investigated their deterioration mechanism.
    In chlorination test, the deterioration rate of A4P wire on mechanical properties were higher than those of ACA4P wire due to chloride ions corrode along grain boundaries on the surface of A4P wire and caused brittle fracture. In bonding reliability, chloride ions corroded Al pad and caused first bond peeling off on the bonding interface.
    In sulfidation test, lower sulfide signal was detected on the surface of ACA4P wire than A4P wire. According to microstructure on cross-section, larger voids formed on A4P wire and caused deterioration on mechanical and electrical properties. In first bonding reliability, both ACA4P and A4P wire fractured on heat affected zone. Besides, ACA4P remained ductile fracture due to presence of gold on neck region but A4P showed brittle fracture. In second bonding reliability, ACA4P fractured on tail part, however, A4P fractured on wire part due to more severe corrosion on wire.
    In power cycling test, as the testing current increased, gold atoms remained on wire surface under 50% of fusing current (FC); then, gold atoms diffused through grain boundaries under 70%FC; at last, gold atoms would uniformly distribute throughout the wire under 90%FC. As power cycles increased, grain growth due to Joule’s heat induced by high current density, and Poisson’s effect made diameter of wire decrease. Finally, fatigue would occur on the place where grain growth dramatically.

    中文摘要 I Extended Abstract III 誌謝 XVI 目錄 XVII 圖目錄 XXII 表目錄 XXVI 第一章 前言 1 第二章 文獻回顧 3 2-1 打線接合製程 3 2-1-1 接合工具 3 2-1-2 接合技術 4 2-2 放電結球製程 6 2-2-1 成球外觀 6 2-2-2 成球與線材微觀組織 7 2-3 影響接合強度之因素 7 2-4 接合導線材料 9 2-4-1 金線 10 2-4-2 銅基導線 11 2-4-3 銀基導線 11 2-4-4 電鍍金層銀鈀合金導線 12 2-5 氯化試驗與硫化試驗 13 2-6 通電試驗 13 2-7 研究目的 14 第三章 實驗步驟與方法 21 3-1 實驗材料 21 3-2 放電結球與打線接合 22 3-3 表面形貌與微觀組織觀察 22 3-4 微硬度測試 23 3-5 EPMA元素分佈分析 23 3-6 拉伸試驗 24 3-6-1 線材拉伸試驗 24 3-6-2 頸部拉伸試驗 24 3-6-3 第一銲點拉伸試驗 24 3-7 I-V曲線電性量測 25 3-7-1 線材I-V曲線電性量測 25 3-7-2 接合I-V曲線電性量測 25 3-8 氯化試驗 25 3-8-1 線材氯化試驗 26 3-8-2 第一與二銲點氯化試驗 26 3-9 硫化試驗 26 3-9-1 線材硫化試驗 27 3-9-2 第一與二銲點硫化試驗 27 3-10 通電循環試驗 28 3-10-1 線材通電循環試驗 28 3-10-2 第一銲點通電循環試驗 28 第四章 結果與討論 35 4-1 鍍金層銀鈀合金導線微觀組織 35 4-2 氯化對鍍金層銀鈀合金線材特性之影響 35 4-2-1 氯化後線材拉伸性質 35 4-2-2 氯化後線材拉伸破斷形貌 36 4-2-3 氯化後線材I-V曲線量測 37 4-3 硫化對鍍金層銀鈀合金線材特性之影響 38 4-3-1 線材溼式與氣式硫化拉伸性質 38 4-3-2 硫化後線材表面形貌特徵分析 38 4-3-3 硫化後線材拉伸破斷表面形貌與微觀組織分析 40 4-3-4 硫化後線材I-V曲線量測 41 4-4 通電循環對鍍金層銀鈀合金線材特性之影響 41 4-4-1 不同通電循環次數之I-V曲線量測 42 4-4-2 不同電流循環下金元素之分佈特性 42 4-4-3 不同通電循環次數下表面形貌與微觀組織分析 43 4-5 放電結球特性分析 44 4-5-1 結球外觀與微觀組織 44 4-5-2 球部與熱影響區硬度分佈 45 4-5-3 EPMA元素分佈分析 45 4-6 氯化與硫化對鍍金層銀鈀合金導線打線接合性質探討 46 4-6-1 第一與第二銲點氯化行為與接合界面解析 46 4-6-2 第一與第二銲點硫化行為與接合界面解析 48 4-7 通電循環對打線接合性質探討 50 4-7-1 第一銲點通電循環試驗後I-V曲線量測與接合強度評估 50 4-7-2 第一銲點通電循環試驗後接合界面演化特性 51 4-8 綜合討論 52 4-8-1 氯化機制 52 4-8-2 硫化機制 52 4-8-3 通電循環機制 53 第五章 結論 107 參考文獻 109

    [1] G. G. Harman, Wire Bonding in Microelectronics, 3rd ed. McGraw-Hill, 2010.
    [2] Y. H. Tian, C. Q. Wang, I. Lum, M. Mayer, J. P. Jung and Y. Zhou, "Investigation of Ultrasonic Copper Wire Wedge Bonding on Au/Ni Plated Cu Substrates at Ambient Temperature", Journal of Materials Processing Technology, 208(1-3), pp. 179-186, 2008.
    [3] J. L. Chen and Y. C. Lin, "A New Approach in Free Air Ball Formation Process Parameters Analysis", IEEE Transactions on Electronics Packaging Manufacturing, 23(2), pp. 116-122, 2000.
    [4] J. Onuki, M. Koizumi, H. Suzuki and I. Araki, "Investigation on Enhancement of Copper Ball Bonds During Thermal Cycle Testing", IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 14(2), pp. 392-395, 1991.
    [5] J. Krzanowski and N. Murdeshwar, "Deformation and Bonding Processes in Aluminum Ultrasonic Wire Wedge Bonding", Journal of Electronic Materials, 19(9), pp. 919-928, 1990.
    [6] I. Qin, A. Shah, C. Huynh and M. Meyer, "Effect of Process Parameters on Pad Damage during Au and Cu Ball Bonding Processes", Electronics Packaging Technology Conference (EPTC) on IEEE, pp. 573-578, 2009.
    [7] B. Langenecker, "Effects of Ultrasound on Deformation Characteristics of Metals", IEEE Transactions on Sonics and Ultrasonics, 13(1), pp. 1-8, 1966.
    [8] S. Murali, N. Srikanth, Y. M. Wong and C. J. Vath, "Fundamentals of Thermo-sonic Copper Wire Bonding in Microelectronics Packaging", Journal of Materials Science, 42(2), pp. 615-623, 2007.
    [9] M. L. Minges, Electronic Materials Handbook: Packaging, ASM International, 1, pp. 225, 1989
    [10] S. Murali, N. Srikanth and C. J. Vath, "Grains, Deformation Substructures, and Slip Bands Observed in Thermosonic Copper Ball Bonding", Materials Characterization, 50(1), pp. 39-50, 2003.
    [11] S. Kaimori, T. Nonaka and A. Mizoguchi, "The Development of Cu Bonding Wire with Oxidation-Resistant Metal Coating", IEEE Transactions on Advanced Packaging, 29(2), pp. 227-231, 2006.
    [12] A. Pequegnat, H. J. Kim, M. Mayer, Y. Zhou, J. Persic and J. T. Moon, "Effect of Gas Type and Flow Rate on Cu Free Air Ball Formation in Thermosonic Wire Bonding", Microelectronics Reliability, 51, pp. 43-52, 2011.
    [13] S. Kumar, H. Kwon, Y. I. Heo, S. H. Kim, J. S. Hwang and J. T. Moon, "Thermosonic Ball Bonding Behavior and Reliability Study of Ag Alloy Wire," Electronic Packaging Technology Conference (EPTC) on IEEE, pp. 254-259, 2013.
    [14] R. Guo, L. Gao, D. Mao, M. Li, X. Wang, Z. Lv and H. Chiu, "Study of Free Air Ball Formation in Ag-8Au-3Pd Alloy Wire Bonding", Microelectronics Reliability, 54, pp. 2550-2554, 2014.
    [15] 林宜璋,「不同退火條件之銅導線經放電結球前後之機械性質與織構分析」,國立成功大學材料科學與工程系碩士論文,民國九十六年。
    [16] 薛皓文,「退火溫度對23μm銀導線打線接合之再結晶及拉伸性質效應探討」,成功大學材料科學及工程學系碩士論文,民國九十九年。
    [17] 陳眉瑜,「Ø20µm Ag-2Pd合金導線放電結球特性及打線接合界面通電效應探討」,成功大學材料科學及工程學系碩士論文,民國一百零二年。
    [18] 蔡咏真,「微細Ag-2Pd-0.2Au合金導線放電結球特性及接合界面通電與熱效應探討」,成功大學材料科學及工程學系碩士論文,民國一百零四年。
    [19] 許哲瑋,「硫化及氯化對精細Ag-Pd-Au-Pt合金導線之打線接合可靠度研究」成功大學材料科學及工程學系碩士論文,民國一百零六年。
    [20] Y. W. Lin, R. Y. Wang, W. B. Ke, I. S. Wang, Y. T. Chiu, K. C. Lu, K. L. Lin and Y. S. Lai, "The Pd Distribution and Cu Flow Pattern of the Pd-Plated Cu Wire Bond and Their Effect on the Nanoindentation", Materials Science and Engineering: A, 543, pp. 152-157, 2012.
    [21] C. J. Hang, W. H. Song, I. Lum, M. Mayer, Y. Zhou, C. Q. Wang, J. T. Moon and J. Persic, "Effect of Electronic Flame Off Parameters on Copper Bonding Wire: Free-Air Ball Deformability, Heat Affected Zone Length, Heat Affected Zone Breaking Force", Microelectronic Engineering, 86, pp. 2094-2103, 2009.
    [22] ASTM F72-17, "Standard Specification for Gold Wire for Semiconductor Lead Bonding", ASTM International, West Conshohocken, PA, 2017.
    [23] L. J. Kai, L. Y. Hung, L. W. Wu, M. Y. Chiang, D. S. Jiang, C. M. Huang and Y. P. Wang, "Silver Alloy Wire Bonding", Electronic Components and Technology Conference (ECTC) on IEEE, pp.1163-1168, 2012.
    [24] N. Noolu, N. Murdeshwar, K. Ely, J. Lippold, and W. Baeslack III, "Phase Transformation in Thermally Exposed Au-Al Ball Bonds" , Journal of Electronic Materials, 33, pp. 340-352, 2004.
    [25] H. Xu, C. Liu, V. V. Silberschmidtb, S. S. Pramanac, T. J. White, Z. Chen, and V. L. Acoff, "Intermetallic Phase Transformations in Au–Al Wire Bonds", Intermetallics, 19, pp. 1808-1816, 2011.
    [26] C. D. Breach and F. Wulff, "New Observations on Intermetallic Compound Formation in Gold Ball Bonds: General Growth Patterns and Identification of Two Forms of Au4Al", Microelectronics Reliability, 44, pp. 973-981, 2004.
    [27] M. Guerdane, "Self-Diffusion in Intermetallic Au4Al: Molecular Dynamics Study Down to Temperatures Relevant to Wire Bonding", Computational Materials Science, 29, pp. 13-23, 2017.
    [28] B. März, A. Graff, R. Klengel, and M. Petzold, "Interface Microstructure Effects in Au Thermosonic Ball Bonding Contacts by High Reliability Wire Materials", Microelectronics Reliability, 54, pp. 2000-2005, 2014.
    [29] C. Lu, "The Challenges of Copper Wire Bonding", International Microsystems Packaging Assembly and Circuits Technology Conference (IMPACT) on IEEE, pp. 1-4, 2010.
    [30] S. Kaimori, T. Nonaka, and A. Mizoguchi, "The Development of Cu Bonding Wire with Oxidation-Resistant Metal Coating", IEEE Transactions on Advanced Packaging, 29, pp. 227-231, 2006.
    [31] C. Y. Chang, F. Y. Hung, and T. S. Lui, "Mechanical and Electrical Properties of Palladium-Coated Copper Wires with Flash Gold", Journal of Electronic Materials, pp. 1-8, 2017.
    [32] B. H Jung, B. K. Yu, S. H. Kim, J. T. Moon, and S. J. Hong, "Effects of Pd Distribution at Free Air Ball in Pd Coated Cu Wire", Electronics Packaging Technology Conference (EPTC) on IEEE, pp. 1-5, 2017.
    [33] Y. Wu, K. N. Subramanian, S. C. Barton and A. Lee, "Electrochemical Studies of Pd-Doped Cu and Pd-Doped Cu-Al Intermetallics for Understanding Corrosion Behavior in Wire-Bonding Packages", Microelectronics Reliability, 78, pp. 355-361, 2017.
    [34] N. Srikanth, J. Premkumar, M. Sivakumar, Y. M. Wong and C. J. Vath, "Effect of Wire Purity on Copper Wire Bonding", Electronics Packaging Technology Conference (EPTC) on IEEE, pp. 755-759, 2007.
    [35] Z. W. Zhong, H. M. Ho, Y. C. Tan, W. C. Tan, H. M. Goh, B. H. Toh, and J. Tan, "Study of Factors Affecting the Hardness of Ball Bonds in Copper Wire Bonding", Microelectronic Engineering, 84(2), pp. 368-374, 2007.
    [36] B. Valdez, M. Schorr, R. Zlatev, M. Carrillo, M. Stoytcheva, L. Alvarez, A. Eliezer and N. Rosas, "Corrosion Control in Industry", Environmental and Industrial Corrosion, Practical and Theoretical Aspects, pp. 25-27, 2012.
    [37] H. W. Hsueh, F. Y. Hung, T. S. Lui, L. H. Chen and K. J. Chen, "Intermetallic Phase on the Interface of Ag-Au-Pd/Al Structure", Advances in Materials Science and Engineering, 2014, 2014.
    [38] K. A. Yoo, C. Uhm, T. J. Kwon, J. S. Cho and J. T. Moon, "Reliability Study of Low Cost Alternative Ag bonding Wire with Various Bond Pad Materials", Electronics Packaging Technology Conference (EPTC) on IEEE, pp. 851-857, 2009.
    [39] E. Sancaktar, P. Rajput and A. Khanolkar, "Correlation of Silver Migration to the Pull Out Strength of Silver Wire Embedded in an Adhesive Matrix", IEEE Transactions on Components and Packaging Technologies, 28(4), pp. 771-780, 2005.
    [40] Y. W. Tseng, F. Y. Hung and T. S. Lui, "Microstructure, Tensile and Electrical Properties of Gold-Coated Silver Bonding Wire", Microelectronics Reliability, 55(3-4), pp. 608-612, 2015.
    [41] Y. W. Tseng, F. Y. Hung and T. S. Lui, "Microstructure, Mechanical and High-Temperature Electrical Properties of Cyanide-Free Au-Coated Ag Wire (ACA)", Materials Transactions, 56(3), pp. 441-444, 2015.
    [42] Y. W. Tseng, F. Y. Hung and T. S. Lui, "Thermoelectric Mechanism and Interface Characteristics of Cyanide-Free Nanogold-Coated Silver Wire", Journal of Electronic Materials, 45(1), pp. 624-630, 2016.
    [43] J. S. Cho, K. A. Yoo, S. J. Hong, J. T. Moon, Y. J. Lee, W. Han, H. Park, S. W. Ha, S. B. Son, S. H. Kang and K. H. Oh, "Pd Effects on the Reliability in the Low Cost Ag Bonding Wire", Electronic Components and Technology Conference (ECTC) on IEEE, pp.1541-1546, 2010.
    [44] H. Baker (Ed.), ASM Handbook. Vol. 3: Alloy Phase Diagrams, Materials Park, Ohio, ASM International, 1992.
    [45] T. Graedel, "Corrosion Mechanisms for Silver Exposed to the Atmosphere", Journal of the Electrochemical Society, 139, pp. 1963-1970, 1992.
    [46] N. Sarkar, R. Fuys Jr, and J. Stanford, "The Chloride Corrosion Behavior of Silver-Base Casting Alloys", Journal of dental research, 58, pp. 1572-1577, 1979.
    [47] L. Zhang, Y. Zhu, H. Chen, K. Leung, Y. Wu, and J. Wu, "Failure Analysis on Reflector Blackening Between Lead Frame Electrodes in LEDs Under WHTOL Test", Microelectronics Reliability, 55, pp. 799-806, 2015.
    [48] R. R. Keller, R. H. Geiss, Y. W. Cheng and D. T. Read "Microstructure evolution during electric current induced thermomechanical fatigue of interconnects", Materials Research Society Conference, 863, pp. 295-300, 2005.
    [49] H. W. Hsueh, F. Y. Hung and T. S. Lui, "A Study on Electromigration-Inducing Intergranular Fracture of Fine Silver Alloy Wires", Applied Physics Letters, 110, 031902, 2017.
    [50] H. W. Hsueh, F. Y. Hung, T. S. Lui and L. H. Chen, "Effect of the Direct Current on Microstructure, Tensile Property and Bonding Strength of Pure Silver Wires", Microelectronics Reliability, 53(8), pp. 1159-1163, 2013.
    [51] P. S. Chauhan, A. Choubey, Z. Zhong, M. G. Pecht. Copper Wire Bonding, Springer, 2014.

    無法下載圖示 校內:2024-01-24公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE