| 研究生: |
潘冠廷 Pan, Kuan-Ting |
|---|---|
| 論文名稱: |
多功能微波電漿處理系統之電漿診斷及光阻去除的研究 The study of plasma diagnostics and photo-resist stripping using multi-functional microwave plasma system |
| 指導教授: |
廖峻德
Liao, Jiunn-Der |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 電漿診斷 、光學放射光譜儀 、Langmuir 探針 、去光阻 、X光光電子能譜儀 |
| 外文關鍵詞: | Langmuir probe, Photo-resist stripping, X-ray Photoelectron Spectroscopy, Plasma diagnostics, Optical Emission Spectroscopy |
| 相關次數: | 點閱:107 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究藉由電漿診斷技術,以Langmuir probe量測在輝光放電區域改變功率和量測位置等參數對電漿狀態的影響,作為評估及調校機台的測試法,並使用光學放射光譜儀進行電漿清除光阻時物種變化的線上即時監測,來探討多功能微波電漿處理系統在進行光阻去除時電漿對試片的反應機制及處理效率。電漿處理後的試片則以場放射型掃描式電子顯微鏡(FE-SEM)來觀察其表面形貌,並使用能量分散式X-光儀(EDS)及X光光電子能譜儀(XPS)進行表面化學組成的分析。實驗結果顯示: 在激發氣體源為O2,壓力控制在0.2 Torr,施加功率為600~1200 W的參數設定下,電漿密度範圍在10^10~10^11 N/cm3間,而電子溫度約為7~9.7 eV,屬於高密度電漿,在接近輝光放電區域的位置,光阻可以被電漿清除。以X光光電子能譜儀分析試片表面的化學鍵結,可得知未處理時光阻包含C、S、F、O等元素,經由電漿處理後,S、F等元素於60 sec電漿處理後即由表面移除,C元素之特性峰值面積亦隨電漿處理時間增加而下降,對應於Si基材之特性峰値的發現,則顯示光阻層經電漿處理後移除而使Si基材露出。本研究使用光學放射光譜儀對CO (265.9 nm及482.3 nm)特性峰的監測,作為即時診斷電漿灰化反應的方法,並藉由CO特性峰值的相對強度變化,來評估電漿處理成效及判定實驗的終止點。
This study utilized Langmuir probe as a plasma diagnostic tool to monitor the effect of plasma generation depending on several parameters such as the generation power and the distance along with the glow discharge region. Optical Emission Spectrometry (OES) was also employed to carry out on-line measurement on the released species in association with photo-resist stripping. Surface morphologies were observed using Field-Emission Scanning Electron Microscopy (FE-SEM), while the changes of chemical compositions and structures owing to plasma treatment were characterized by Energy Dispersive X-ray Spectrometer (EDS) and X-ray Photoelectron Spectroscopy (XPS). Under the condition of O2 plasma, 0.2 torr and 600~1200 W with two specified after-glow positions, experimental results demonstrated that plasma density of current treatment system was in the range of 10^10~ 10^11 N/cm3, comparable with the electron temperature of 7.0~9.7 eV. Photo-resist stripping could be mostly completed at the position close to the glow-discharge region. Surface analyses using XPS revealed that plasma treatment on the surface containing C, F, S and O elements tended to reduced firstly the content of S and F elements, followed by C element. The photo-resist was highly stripped as the Si element was found. The emission intensities of CO at 265.8 nm and 482.3 nm supported the photo-resist stripping reactions that was likely to provide the information on the released rate of the associated chemical species from the photo-resist.
1. A. Grill, Cold Plasma in Materials Fabrication-From Fundamentals to Application, IEEE Press, NY, 1994.
2. C. M. Chan, Polymer Surface Modification and characterization, Hanser, NY, 1996.
3. J. D. Plimmer, M. D. Deal and P. B. Griffin, Silicon VLSI Technology: Fundamentals Practice and Modeling, Prentice-Hall Inc, NJ, 2000.
4. S. Park and C. Kim, ”An array of inductively coupled plasma sources for large area plasma”, Thin Solid Films, 355-356, 252-255, 1999.
5. C. H. Yi, Y. H. Lee, D. W. Kim and G. Y. Yeom, “Characteristic of a dielectric barrier discharges using capillary dielectric and its’ application to photoresist etching”, Surface and Coating Technology, 163-164, 723-727, 2003.
6. H. Shirai, Y. Sakuma and H. Ueyama, “The control of the high-density micro- wave plasma for large-area electronics”, Thin Solid Films, 337, 12-17, 1999.
7. T. J. Wu and C. S. Kou, “A large-area plasma source excited by a tunable surface wave cavity”, Review of Scientific Instrument, 70, 2331-2337, 1999.
8. D. M. Manos, “Characterization of Laboratory Plasmas with Probes”, Journal of Vacuum Science Technology A, 3, 1059-1066, 1985.
9. Y. Ye and R. K. Marcus, “Application of a tuned langmuir probe for the diagnostic study of radio frequency glow discharges: Instrumentation and Theory”, Spectrochimica Acta Part A, 997-1010, 1995.
10. A. Brockhaus, D. Korzac, F. Werner, Y.Yuan and J. Engemann, “Characterization of a microwave plasma by In-situ diagnostics”, Surface and Coatings Technology, 74-75, 431-442, 1995.
11. C. C. Weng, J. D. Liao, Y. T. Wu, M. C. Wang, R. Klauser, M. Grunze and Michael Zharnikov, “Modification of Aliphatic Self-Assembled Monolayers by Free Radical Dominant Plasma: The Role of the Plasma Composition”, Langmuir, 20, 10093-1009, 2004.
12. K. T. Rie, E. Menthe and J. Whole, “Optimization and control of a plasma carburizing process by means of optical emission spectroscopy”, Surface and Coating Technology, 98, 1192-1198, 1999.
13. H. Chatei, B. J. Jamal, M. Pemy and P. Alont, “Optical emission diagnostics of permanent and pulsed microwave discharge in H2-CH4-N2 for diamond deposition”, Surface and Coating Technology, 100-101, 226-231, 1996.
14. K. I. Takagi, A. Ikeda, T. Fujimura and Y. Kuroki, “Inductively coupled plasma application to the resist ashing”, Thin Solid Films, 386, 160-164, 2001.
15. K. Shinagawa, J. Yamamoto, S. Ohgawara, S. Zaima and M. Furukawa, “Effects of nitrogen addition to microwave oxygen plasma in surface wave with disk-Plate window and photoresist ashing”, Japanese Journal of Applied Physics, 43, 6858–6862, 2004.
16. 徐靜怡, 陳秋美和金光祖, 臭氧在高科技的應用-省水式臭氧光阻去除技術, 節約用水, 工研院能資所, 第36卷, 36-38, 民93.
17. B. F. I, Plasmas: laboratory and cosmic, Van Nostrand, 1966.
18. H. R. Griem and R. H. Lovberg, Plasma physics, Academic Press, NY, 1971.
19. 董家齊和陳寬任, 奇妙的物質第四態—電漿, 科學發展, 354, 52-59, 2002
20. F. F. Chen, Introduction to Plasma Physics and Controlled Fusion, Plenum Press, NY, 1983.
21. 龍文安, 半導體微影技術, 五南圖書出版公司, 2004
22. I. H. Hutchinson, Principles of Plasma Diagnostics 2nd, Cambridge University Press, 2002.
23. Chapman B, Glow Discharge Processes-Sputtering and Plasma Etching, John Wiley and sons, 1980.
24. H. V. Boenig, Plasma Science and Technology, Cornell University Press, 1982.
25. 翁志強, 順流式遠端電漿對單層有機金屬表面應機制之研究, 私立中原大學醫學工程系碩士論文, 2001.
26. 蔡濱丞, 自我排列單分子層於順流式電漿系統中反應速率及機制之研究, 國立成功學材料科學及工程學系碩士論文, 2005.
27. B. Chapman, Glow Discharge Processes: Sputtering and Plasma Etching, John Wiley & Sons, 1980.
28. 吳建宏, 低溫高密度微波電漿處理技術對高分子材料表面改質之探討, 私立中原大學醫學工程系碩士論文, 1998.
29. 王明誠, 利用同步輻射x光光電子能譜研究電漿誘導生成官能基對生物單體固定之模式, 私立中原大學醫學工程學系博士論文, 2003.
30. A. Bogaerts, A. Quentmeier, N. Jakubowski and R. Gijbels, “Plasma Diagnostics of Analytical Grimm-type Glow Discharge in Argon and in Neon: Langmuir Probe and Optical Emission Spectrometry Measurements”, Spectrochimica Acta Part B, 50, 1377-1349, 1995.
31. 潘興強, 蘭牟爾探針量測系統發展, 國立清華大學工程與系統科學系碩士論文, 1998.
32. J. D. Swift and M. J. R. Schwar, Electrical Probes for Plasma Diagnostics, Chap .1, Iliffe Books, 1971.
33. M. Capitelli and C. Gorse, Plasma Technology: Probe Diagnostics of Plasmas, Pienum Press, 1992.
34. W. A. Bingel, Theory of Molecular Spectra, John Wiley & Sons, 1970.
35. B. W. Shore and D. H. Menzel, Principles of Atomic Spectra, Wiley, NY, 1969.
36. A. Ulman, An Introduction to Ultra-thin Organic Films From Langmuir-Blodgett to Self-Assembly, Part 3, Rochester, 1991.
37. N. Sprang and D. Theirich, J. Engemann, ”Plasma and Ion Beam Surface Treatment of Polyethylene”, Surface and Coating Technology, 74-75, 689-695, 1995.
38. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, Chap15, John Wiley & Sons, INC, 1994.
39. C. C. Wang and G. H. Hsiue, ”Glucose Oxidase Immobilization onto a Plasma-Induced Graft Copolymerized Polymeric Membrane Modified by Poly(Ethylene Oxide)as a Spacer”, Journal of Applied Polymer Science, 50, 1141-1149, 1993.
40. H. Yasuda, Plasma Polymerization, Orlando, Academic Press, 1985.
41. H. K. Yasuda, Plasma Polymerization and Plasma Interactions with Polymeric Materials, John Wiley & Sons, Inc., 1990.
42. Y. L Hsieh and M. Wu, “Residual Reactivity for Surface Grafting of Acrylic Acid on Argon Glow-discharged Poly(ethylene terephalate)(PET) Films”, Journal of Applied Polymer Science, 43, 2067-2082, 1991.
43. L. Dai, H. A. W. Stjohn, J. Bi, P. Zientek, R. C. Chatelier and H. J. Griesser, “Biomedical Coatings by the Covalent Immobilization of Polysaccharides onto Gas-Plasma Activated Polymer Surfaces”, Surface and Interface Analysis, 29, 46-55, 2000.
44. C. P. Wang, Polymers for Electronic and Photonic Applications, Academic Press, Boston, 1993.
45. A. Marmur, “Equilibrium Contact Angles: Theory and Measurement”, Colloids and Surfaces A, 116, 55-61, 1996.
46. J. P. Badey, E. Espuche, D. Sage, B. C. Jugnet, C. Batier and T. M. Duc, “A Comparative Study of the Effects of Ammonia and Hydrogen Plasma Downstream Treatment on the Surface Modification of Polytetrafuoroethylene”, Polymer, 37, 1377-1386, 1996.
47. R. L. C. Wang and H. J. Kreuzer, “Molecular Conformation and Solvation of Oligo(ethyleneglycol)-Terminated Self-Assembled Monolayers and Their Resistance to Protein Adsorption”, Journal of Physical Chemistry- B, 101, 9767-9773, 1997.
48. P. Harder, M. Grunze, R. Dahint, G. M. Whitesides and P. E. Laibinis, “Molecular Conformation in Oligo(ethylene glycol)-Terminated Self-Assembled Monolayers on Gold and Silver Surface Determins Their Ability to Resist Protein Adsorption”, Journal of Physical Chemistry- B, 102, 426-436, 1998.
49. E.L. Decker, B. Frank, Y. Suo and S. Garoff, “Physics of Contact Angle Measurement”, Colloids and Surfaces A, 156, 177-189, 1999.
50. D. Y. Kwok and A. W. Neumann, “Contact Angle Measurement and Contact Angle Interpretation”, Advance in Colloid and Interface Science, 81, 167-249, 1999.
51. J. Bachmann, A. Ellies and K.H. Hartge, “Development and Application of a New Sessile Drop Contact Angle Method to Assess Soil Water Repellency”, Journal of Hydrology, 231-232, 66-75, 2000.
52. 汪建民, 材料分析, 中國材料學會, 1999.
53. G. Herzberg, “Molecular Spectra and Molecular Structure III. Electronic Spectra and Electronic Structure of Polyatomic Molecules”, Van Nostrand Reinhold, NY, 1966.
54. J. C. Manifacier, and J. Gasiot, “A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film”, Journal of Physics E, 1002-1004, 1976.
55. J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics, Inc., 1995.
56. N. H. Turner, “X-ray Photoelectron and Auger Electron Spectroscopy”, Applied Spectroscopy Reviews, 35, 203-254, 2000.
57. S. Gasiorowicz, Quantum Physics, Ch. 1, John Wiley and sons, 7, 1974.
58. R. Auciello and D. L. Flamm, Plasma Diagnostics Volume 1, Ch. 3, Academic Press, 1989.
59. J. T. Gudmundsson, “Global model of plasma chemistry in a low-pressure O2/F2 discharge”, Journal of Physics D: Applied Physics, 35, 328-341, 2002.
60. 管維中, 微波表面波電漿中之電漿共振反應, 國立清華大學物理學系學系碩士論文, 1990
61. R. W. B. Pearse and A. G. Gaydon, The identification of molecular spectra, Chapman & Hall, London, 1965.