簡易檢索 / 詳目顯示

研究生: 鄭鴻輝
Zheng, Hong-Hui
論文名稱: 共振超音波頻譜在高頻下量測固體材料性質的發展
Development of Resonant Ultrasound Spectroscopy for Determination of Material Properties of Solids at High Frequency
指導教授: 王雲哲
Wang, Yun-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 95
中文關鍵詞: 現黏彈性組尼弱彈性偶合共振超因波頻譜儀
外文關鍵詞: linear viscoelastic damping, Resonant ultrasound spectroscopy
相關次數: 點閱:86下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討如何利用共振超音波頻譜儀量測固體材料的高頻性質,以實驗的方式實際量測材料的剪力模數、楊氏模數、線黏彈性阻尼。固體材料由兩個超音波壓電傳導器支持,一端產生振動波、另一端接收振動波。以試體角點接觸壓電傳導器,使得壓電與試體接觸條件屬於弱彈性偶合,因此引起微小振動,微量轉為振動頻率,量測所得訊號,並利用電腦快速的從共振頻率去推斷剪力模數,以及測量共振曲線的寬度,計算材料的正切消散係數tan δ;另外再利用有限元素軟體模擬固體材料在各個共振模態的頻率以及形變。由實驗結果可知,剪力波與縱向波電壓傳導器量測出的共振頻率差不多,但前者的訊號比後者還要大約3至20倍,而剪力波電壓傳導器量測短柱時,試體擺設角度也會影響實驗訊號的大小;當固體材料的共振頻率越高,所量測出來的阻尼會越小;另外在模擬不同厚度的中空柱時也發現,在共振的扭轉模態會有相同的共振頻率,與RUS實驗結果吻合。實驗結果得知,鋁的線黏彈性阻尼約2.29~5.58×10-4,304不銹鋼的線黏彈性阻尼約3.21~8.46×10-4,以及錫的線黏彈性阻尼約4.55~ 1.29×10-3,最後以Lorentzian curve fit 的結果比較,兩者相差不大。

    In this thesis, a resonant ultrasound spectroscopy was developed for determination of material properties of solids at high frequency, such as the shear modulus G, Young’s modulus E and linear viscoelastic damping of the material. Specimens are mounted between two piezoelectric ultrasonic transducers by corner contact without gluing. One of the transducers generates mechanical excitation, and the other behaves as a receiver. The corner contact provides elastically weak coupling to the transducers, and hence minimal perturbation to the vibration, minimal shift in resonant frequency and minimum parasitic damping. To compare with experimental results, finite element calculations with ABAQUS are performed. It is found that shear transducers provide stronger signals than compressional ones due to the lowest resonance mode being shear modes. For short cylinders, the orientation of the cylinder may influence the strength of measured signals when shear transducers are adopted. The tilt of the specimens may affect measurements as well. The linear viscoelastic damping is found to be linearly decreases as frequency increases, suggesting the string theory of vibrating dislocations is correct in metals, such as Sn, Al and stainless steel. In experiment result, the damping tan δ of Al about 2.29 ~ 5.58 × 10-4, SS about 3.21~8.46×10-4, and Sn about 4.55~ 1.29×10-3, roughly consistent with the data reduction method by using the Lorentzian curve fitting.

    Abstract (English) I Abstract (Chinese) II Acknowledgements III Table of Contents IV Table Lists VI Figure Lists VII Nomenclature XI Chapter 1 Introduction 1 1.1 Motivation and Goals 1 1.2 Literature survey 2 1.3 Organization of this thesis 4 Chapter 2 Theoretical development 5 2.1 Theory of RUS 5 2.2 Theory of wave propagation: governing equations and general solutions 7 2.2.1 Modes of propagation in plates 7 2.2.2 Modes of propagation in solid cylinders 7 2.2.3 Resonance of an isotropic cube 9 2.3 Finite element method for the elastic wave problem (ABAQUS) 12 2.4 Lorentzian curve fit 26 Chapter 3 Experimental development 27 3.1 Experimental instrumentation 28 3.1.1 Piezoelectric shear transducer 28 3.1.2 Piezoelectric compressional transducer 28 3.1.3 Homemade shear transducer holder 28 3.1.4 Homemade compressional transducer holder 28 3.2 Data acquisition 31 3.2.1 National Instrument: PXI (PCI eXtensions for Instrumentation) 31 3.2.2 National Instruments: LabVIEW® 35 3.2.3 Lock-in amplifier 41 Chapter 4 Results and discussion 44 4.1 Study of Aluminum alloy 44 4.1.1 RUS 44 4.1.2 Finite element 56 4.2 Study of 304 stainless steel alloy 76 4.3 Study of Tin 83 Chapter 5 Conclusions and future work 89 5.1 Conclusions 89 5.2 Future work 89 Reference 90

    1. Migliori, A.; Sarrao, J. L., Resonant Ultrasound Spectroscopy. Wiley: New York, 1997.
    2. Leisure, R. G.; Foster, K.; Hightower, J. E.; Agosta, D. S., Internal friction studies by resonant ultrasound spectroscopy. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2004, 370, (1-2), 34-40.
    3. Sarrao, J. L.; Chen, S. R.; Visscher, W. M.; Lei, M.; Kocks, U. F.; Migliori, A., DETERMINATION OF THE CRYSTALLOGRAPHIC ORIENTATION OF A SINGLE-CRYSTAL USING RESONANT ULTRASOUND SPECTROSCOPY. Review of Scientific Instruments 1994, 65, (6), 2139-2140.
    4. Cheong, Y. M.; Jung, H. K.; Joo, Y. S.; Kim, S. S.; Kim, Y. S., Dynamic elastic constants of anisotropic materials by resonant ultrasound spectroscopy. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control 2000, 47, (3), 559-564.
    5. Migliori, A.; Maynard, J. D., Implementation of a modern resonant ultrasound spectroscopy system for the measurement of the elastic moduli of small solid specimens. Review of Scientific Instruments 2005, 76, (12).
    6. Lakes, R. S., Viscoelastic measurement techniques. Review of Scientific Instruments 2004, 75, (4), 797-810.
    7. Isaak, D. G.; Ohno, I., Elastic constants of chrome-diopside: application of resonant ultrasound spectroscopy to monoclinic single-crystals. Physics and Chemistry of Minerals 2003, 30, (7), 430-439.
    8. Maynard, J. D., Resonant ultrasound spectroscopy. SPIE 1998, 3341, (The International Society for Optical Engineering), 132-142.
    9. Zadler, B. J.; Le Rousseau, J. H. L.; Scales, J. A.; Smith, M. L., Resonant Ultrasound Spectroscopy: theory and application. Geophysical Journal International 2004, 156, (1), 154-169.
    10. Spoor, P. S.; Maynard, J. D.; Pan, M. J.; Green, D. J.; Hellmann, J. R.; Tanaka, T., Elastic constants and crystal anisotropy of titanium diboride. Applied Physics Letters 1997, 70, (15), 1959-1961.
    11. Ulrich, T. J.; McCall, K. R.; Guyer, R. A., Determination of elastic moduli of rock samples using resonant ultrasound spectroscopy. Journal of the Acoustical Society of America 2002, 111, (4), 1667-1674.
    12. Landa, M.; Sedlak, P.; Sittner, P.; Seiner, H.; Heller, L., On the evaluation of temperature dependence of elastic constants of martensitic phases in shape memory alloys from resonant ultrasound spectroscopy studies. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2008, 481, 567-573.
    13. Recarte, V.; Perez-Landazabal, J. I.; No, M. L.; Juan, J. S., Study by resonant ultrasound spectroscopy of the elastic constants of the beta phase in Cu-Al-Ni shape memory alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2004, 370, (1-2), 488-491.
    14. Ogi, H.; Ledbetter, H.; Kim, S.; Hirao, M., Contactless mode-selective resonance ultrasound spectroscopy: Electromagnetic acoustic resonance. Journal of the Acoustical Society of America 1999, 106, (2), 660-665.
    15. Vuorinen, J. E.; Schwarz, R. B.; McCullough, C., Elastic constants of an aluminum-alumina unidirectional composite. Journal of the Acoustical Society of America 2000, 108, (2), 574-579.
    16. Schwarz, R. B.; Hooks, D. E.; Dick, J. J.; Archuleta, J. I.; Martinez, A. R., Resonant ultrasound spectroscopy measurement of the elastic constants of cyclotrimethylene trinitramine. Journal of Applied Physics 2005, 98, (5).
    17. Migliori, A.; Ledbetter, H.; Thoma, D. J.; Darling, T. W., Beryllium's monocrystal and polycrystal elastic constants. Journal of Applied Physics 2004, 95, (5), 2436-2440.
    18. Ogi, H.; Nakamura, N.; Tanei, H.; Hirao, M.; Ikeda, R.; Takemoto, M., Off-diagonal elastic constant and sp(2)-bonded graphitic grain boundary in nanocrystalline-diamond thin films. Applied Physics Letters 2005, 86, (23).
    19. Nakamura, N.; Ogi, H.; Nitta, H.; Tanei, H.; Fujii, M.; Yasui, T.; Hirao, M., Study of elastic anisotropy of cu thin films by resonant-ultrasound spectroscopy coupled with laser-Doppler interferometry and pump-probe photoacoustics. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 2006, 45, (5B), 4580-4584.
    20. Ogi, H.; Sato, K.; Asada, T.; Hirao, M., Complete mode identification for resonance ultrasound spectroscopy. Journal of the Acoustical Society of America 2002, 112, (6), 2553-2557.
    21. Mindlin, R. D., Simple Modes of Vibration of Crystals. Journal of Applied Physics 1956, 27, (12), 1462-1466.
    22. Lee, T.; Lakes, R. S.; Lal, A., Resonant ultrasound spectroscopy for measurement of mechanical damping: Comparison with broadband viscoelastic spectroscopy. Review of Scientific Instruments 2000, 71, (7), 2855-2861.
    23. Lakes, R. S., Viscoelastic Solids. McGraw-Hill: New York, 1999.
    24. Isaak, D. G.; Carnes, J. D.; Anderson, O. L.; Oda, H., Elasticity of fused silica spheres under pressure using resonant ultrasound spectroscopy. Journal of the Acoustical Society of America 1998, 104, (4), 2200-2206.
    25. Tian, J. Y.; Ogi, H.; Hirao, M., Vibration analysis of an elastic-sphere oscillator contacting semi-infinite viscoelastic solids in resonant ultrasound microscopy. Journal of Applied Physics 2004, 95, (12), 8366-8375.
    26. Yamanaka, K.; Saito, A.; Ishikawa, S.; Cho, H., Floating resonance method for precise evaluation of bearing balls. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 2002, 41, (5B), 3498-3500.
    27. Yoneda, A.; Aizawa, Y.; Rahman, M. M.; Sakai, S., High frequency resonant ultrasound spectroscopy to 50 MHz: Experimental developments and analytical refinement. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 2007, 46, (12), 7898-7903.
    28. Delaunay, T.; Le Clezio, E.; Guennou, M.; Dammak, H.; Thi, M. P.; Feuillard, G., Full tensorial characterization of PZN-12%PT single crystal by resonant ultrasound spectroscopy. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control 2008, 55, (2), 476-488.
    29. Zhang, H.; Sorbello, R. S.; Hucho, C.; Herro, J.; Feller, J. R.; Beck, D. E.; Levy, M.; Isaak, D.; Carnes, J. D.; Anderson, O., Radiation impedance of resonant ultrasound spectroscopy modes in fused silica. Journal of the Acoustical Society of America 1998, 103, (5), 2385-2394.
    30. Vdovychenko, O. V.; Voropaev, V. S.; Slipenyuk, A. N., Effect of microstructure on Young's modulus of extruded Al-SiC composites studied by resonant ultrasound spectroscopy. Journal of Materials Science 2006, 41, (24), 8329-8338.
    31. Nakamura, N.; Ogi, H.; Hirao, M.; Ono, T., Determination of anisotropic elastic constants of superlattice thin films by resonant-ultrasound spectroscopy. Journal of Applied Physics 2005, 97, (1).
    32. Ogi, H.; Nakamura, N.; Hirao, M., Advanced resonant ultrasound spectroscopy for measuring anisotropic elastic constants of thin films. Fatigue & Fracture of Engineering Materials & Structures 2005, 28, (8), 657-663.
    33. Kinney, J. H.; Gladden, J. R.; Marshall, G. W.; Marshall, S. J.; So, J. H.; Maynard, J. D., Resonant ultrasound spectroscopy measurements of the elastic constants of human dentin. Journal of Biomechanics 2004, 37, (4), 437-441.
    34. Mason, W. P., Physical acoustics principles and methods. Academic Press: New York, 1964.
    35. Demarest, H. H., Cube-Resonance Method to Determine Elastic Constants of Solids. Journal of the Acoustical Society of America 1971, 49, (3), 768-&.
    36. Lamb, H., On the vibrations of an elastic sphere. Proc Lond Math Soc 1882, s1-14, (8), 50-56.
    37. Araki, W.; Kamikozawa, T.; Adachi, T., Determination of residual stress in spherical balls by resonant ultrasound spectroscopy. Ndt & E International 2008, 41, (2), 82-87.
    38. Yaoita, A.; Adachi, T.; Yamaji, A., Determination of elastic moduli for a spherical specimen by resonant ultrasound spectroscopy. Ndt & E International 2005, 38, (7), 554-560.
    39. Schreiber, E.; Anderson, O. L.; Soga., N., Elastic constants and their measurement. McGraw-Hill: New York, 1974,c1973.
    40. Ultrasonic Transducers for Nondestructive Testing, R. D. T. I. I., In 2004.
    41. Quackenbush, J.; Brodt, M.; Lakes, R. S., Viscoelastic behavior over a wide range of time and frequency in tin alloys: SnCd and SnSb. Scripta Materialia 1996, 35, (3), 441-447.
    42. Lakes, R. S.; Quackenbush, J., Viscoelastic behaviour in indium-tin alloys over a wide range of frequencies and times. Philosophical Magazine Letters 1996, 74, (4), 227-232.
    43. Read, T. A., The Internal Friction of Single Metal Crystals. Physical Review 1940, 58, (4), 371.
    44. Weertman, J., Internal Friction of Metal Single Crystals. Journal of Applied Physics 1955, 26, (2), 202-210.
    45. Schoeck, G.; Bisogni, E.; Shyne, J., The activation energy of high temperature internal friction. Acta Metallurgica 1964, 12, (12), 1466-1468.
    46. Cagnoli, G.; Gammaitoni, L.; Marchesoni, F.; Segoloni, D., On Dislocation Damping at Low-Frequencies. Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties 1993, 68, (5), 865-870.
    47. D'Anna, G.; Benoit, W.; Vinokur, V. M., Internal friction and dislocation collective pinning in disordered quenched solid solutions. Journal of Applied Physics 1997, 82, (12), 5983-5990.

    下載圖示 校內:2010-08-20公開
    校外:2018-08-20公開
    QR CODE