| 研究生: |
楊雅婷 Yang, Ya-Ting |
|---|---|
| 論文名稱: |
放射線前處理對惡性神經膠母細胞瘤之藥物毒性的影響 The Effects of radiation pre-conditioning on drugs toxicity in malignant gliomas |
| 指導教授: |
司君一
Sze, Chun-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 細胞生物與解剖學研究所 Institute of Cell Biology and Anatomy |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 神經膠母細胞瘤 、G2/M細胞週期暫停 、太平洋紫杉醇 、微管 |
| 外文關鍵詞: | Glioblastoma, G2/M arrest, Paclitaxel, Microtubule |
| 相關次數: | 點閱:230 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
神經膠母細胞瘤是一種具有高死亡率及復發率的惡性腫瘤。而手術、放射線及化學療法是主要治療神經膠母細胞瘤的方法。然而,這些治療方法最後常常會引起腫瘤對化學療法及放射線療法產生抗性。因此去找出神經膠母細胞瘤如何產生抗性的機制或許可以提供一個高度專一及有效的治療方法。在我們之前的研究已經知道神經膠母細胞瘤的細胞株可以從半致死劑量的放射線下存活,並且會調控Vimentin蛋白轉移到細胞核中。這些結果都顯示神經膠母細胞瘤可能藉由將細胞週期暫停在G2/M、中心體增生及上皮-間葉過渡 (epithelial-mesenchymal transition)使細胞在照過放射線後存活。而這些細胞對於太平洋紫杉醇(paclitaxel)這種常用於化學療法的細胞分裂抑制劑有高度的敏感性。
在本篇的研究當中,我們假設經過放射線前處理的腫瘤細胞會因為改變的細胞內分子的特性而使細胞對於化學療法的藥劑更敏感,而藉此可找到療效更好的治療方法。我們利用CNS-1細胞株經放射線處理後建立了三個放射線前處理的神經膠母細胞瘤的細胞株。在西方墨點法的分析下,p21、p53及γ-tubulin蛋白的表現量會隨著放射線劑量增加而上升。而Cdk2, Cdk4, Cdk1, PLK, Cdc25B and Cdc25C蛋白的表現量會先在中等放射線劑量時上升,在最高劑量時下降。而這些結果都顯示經放射線前處理的細胞會走向暫停G2/M細胞週期並伴隨著中心體增加來使細胞逃過死亡。此外,免疫組織染色的結果也顯示,在一個經放射線治療後又復發的病人檢體中,vimentin蛋白和在細胞株中的分布結果相似,會轉移到細胞核中。而有趣的是,若將CNS-1細胞經1- [4-(furo [2,3-b] quinolin-4-ylamino)phenyl]ethanone (CIL-102) 這種微管聚合的抑制劑前處理後,會增加細胞對太平洋紫杉醇的敏感性。但若是細胞先經放射線前處理後再處理CIL-102,則會降低細胞對太平洋紫杉醇的敏感性。而根據這些實驗結果我們可以下一個結論:CNS-1這株神經膠母細胞瘤的細胞株若是經過放射線或CIL-102藥物的前處理使細胞週期停在G2/M,可以增加太平洋紫杉醇對腫瘤的毒殺性。這篇研究可以提供一個結合放射線及化學療法在臨床治療的方向,在提高對於神經膠母細胞瘤的治療效果的同時也降低藥物對病人的傷害。
Gliobastoma (GBM) is a malignant cancer with high mortality and recurrence rate. Surgery, radiation and chemotherapy are common treatment modalities for GBM. However, cancer therapy may complicated by chemo/radiation-induced resistance. To detect underlying mechanisms of how GBM develop resistance may help to design a highly specific and efficient treatment regime. Our previous data showed that glioma cell lines survive sequential LD 50 radiations. Vimentin was upregulated and translocated to the nuclei. These results suggested that cell cycle G2/M arrest, centrosome amplification, and EMT may protect GBM cells from death. Furthermore, these cells were sensitized to paclitaxel (taxol) treatment, a mitotic inhibitor used in cancer chemotherapy.
In this study, we test the hypothesis that radiation resistant/ preconditioned tumor may have alerted molecular characters to make it more sensitive to adjuvant cancer treatment which might provide clues to find better methods to enhance therapeutic efficacy. We had irradiated CNS-1 cells to establish a radiation preconditioned (RP) GBM cell lines. By using Western blotting method, the p21, p53 and γ-tubulin were up-regulated in a radiation dose-dependent manner. The expression of Cdk2, Cdk4, Cdk1, PLK, Cdc25B and Cdc25C were up-regulated at low and medium irradiation dosages (4 and 8 Gy), then down-regulated at high irradiation dosage (12 Gy). These data suggested that RP cells may enter G2/M cell cycle check point arrest and along with centrosome amplification. In addition, immunohistochemical staining showed vimentin nuclear translocation in post- irradiated, recurrent GBM. Interestingly, CNS-1 cells preconditioned with CIL-102, a microtubule polymerization inhibitor that rested the cells at G2/M phase, resulted in enhanced paclitaxel toxicity by using Trypan Blue Exclusion assay. But RP cells combined treatment with paclitaxel and CIL-102 showed decreased drug toxicity. According to these results, we conclude that CNS-1 preconditioned with radiation or CIL-102 resulted in G2/M check point arrest which enhances the efficacy of paclitaxel in killing tumor. Given glioma therapy may complicated by chemo/radiation toxicity, this study may provide clues to design a therapeutic regime to enhance chemo reagent’s killing efficacy but with less toxicity to the patients.
Ababneh M, Gotz C & Montenarh M 2001 Downregulation of the cdc2/cyclin B protein kinase activity by binding of p53 to p34(cdc2). Biochem Biophys Res Commun 283 507-512.
Agarwal ML, Agarwal A, Taylor WR & Stark GR 1995 p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl Acad Sci U S A 92 8493-8497.
al-Mefty O, Kersh JE, Routh A & Smith RR 1990 The long-term side effects of radiation therapy for benign brain tumors in adults. J Neurosurg 73 502-512.
Choy H 2001 Taxanes in combined modality therapy for solid tumors. Crit Rev Oncol Hematol 37 237-247.
Clarke J, Butowski N & Chang S 2010 Recent advances in therapy for glioblastoma. Arch Neurol 67 279-283.
Conde C & Caceres A 2009 Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci 10 319-332.
de Vries NA, Beijnen JH & van Tellingen O 2009 High-grade glioma mouse models and their applicability for preclinical testing. Cancer Treat Rev 35 714-723.
Denysenko T, Gennero L, Roos MA, Melcarne A, Juenemann C, Faccani G, Morra I, Cavallo G, Reguzzi S, Pescarmona G, et al. 2010 Glioblastoma cancer stem cells: heterogeneity, microenvironment and related therapeutic strategies. Cell Biochem Funct 28 343-351.
Fountzilas G, Karavelis A, Capizzello A, Kalogera-Fountzila A, Karkavelas G, Zamboglou N, Selviaridis P, Foroglou G & Tourkantonis A 1999 Radiation and concomitant weekly administration of paclitaxel in patients with glioblastoma multiforme. A phase II study. J Neurooncol 45 159-165.
Fukasawa K 2005 Centrosome amplification, chromosome instability and cancer development. Cancer Lett 230 6-19.
Fukasawa K 2008 P53, cyclin-dependent kinase and abnormal amplification of centrosomes. Biochim Biophys Acta 1786 15-23.
George J, Banik NL, and Ray SK 2010Molecular Mechanisms of Taxol for Induction of Cell Death in Glioblastomas. Glioblastoma 283-298,
Giannakakou P, Robey R, Fojo T & Blagosklonny MV 2001 Low concentrations of paclitaxel induce cell type-dependent p53, p21 and G1/G2 arrest instead of mitotic arrest: molecular determinants of paclitaxel-induced cytotoxicity. Oncogene 20 3806-3813.
Gorodetsky R, Levdansky L, Ringel I & Vexler A 1998 Paclitaxel-induced modification of the effects of radiation and alterations in the cell cycle in normal and tumor mammalian cells. Radiat Res 150 283-291.
Hoshino T & Wilson CB 1975 Review of basic concepts of cell kinetics as applied to brain tumors. J Neurosurg 42 123-131.
Houtgraaf JH, Versmissen J & van der Giessen WJ 2006 A concise review of DNA damage checkpoints and repair in mammalian cells. Cardiovasc Revasc Med 7 165-172.
Huang YT, Huang DM, Guh JH, Chen IL, Tzeng CC & Teng CM 2005 CIL-102 interacts with microtubule polymerization and causes mitotic arrest following apoptosis in the human prostate cancer PC-3 cell line. J Biol Chem 280 2771-2779.
Josson S, Sharp S, Sung SY, Johnstone PA, Aneja R, Wang R, Gururajan M, Turner T, Chung LW & Yates C 2010 Tumor-Stromal Interactions Influence Radiation Sensitivity in Epithelial- versus Mesenchymal-Like Prostate Cancer Cells. J Oncol 2010.
Julka PK, Awasthy BS, Rath GK, Agarwal S, Varna T, Mahapatra AK & Singh R 2000 A study of concurrent radiochemotherapy with paclitaxel in glioblastoma multiforme. Australas Radiol 44 84-87.
Kajiyama H, Shibata K, Terauchi M, Yamashita M, Ino K, Nawa A & Kikkawa F 2007 Chemoresistance to paclitaxel induces epithelial-mesenchymal transition and enhances metastatic potential for epithelial ovarian carcinoma cells. Int J Oncol 31 277-283.
Kalluri R & Weinberg RA 2009 The basics of epithelial-mesenchymal transition. J Clin Invest 119 1420-1428.
Karmakar S, Banik NL, and Ray SK 2010 Current Endeavors for Enhancing Efficacy of
Paclitaxel for Treatment of Glioblastoma. Glioblastoma 299-323,
Khasraw M & Lassman AB 2010 Advances in the treatment of malignant gliomas. Curr Oncol Rep 12 26-33.
Koziara JM, Lockman PR, Allen DD & Mumper RJ 2004 Paclitaxel nanoparticles for the potential treatment of brain tumors. J Control Release 99 259-269.
Kruse CA, Molleston MC, Parks EP, Schiltz PM, Kleinschmidt-DeMasters BK & Hickey WF 1994 A rat glioma model, CNS-1, with invasive characteristics similar to those of human gliomas: a comparison to 9L gliosarcoma. J Neurooncol 22 191-200.
Lahat G, Zhu QS, Huang KL, Wang S, Bolshakov S, Liu J, Torres K, Langley RR, Lazar AJ, Hung MC, et al. 2010 Vimentin is a novel anti-cancer therapeutic target; insights from in vitro and in vivo mice xenograft studies. PLoS One 5 e10105.
Lederman G, Wronski M, Arbit E, Odaimi M, Wertheim S, Lombardi E & Wrzolek M 2000 Treatment of recurrent glioblastoma multiforme using fractionated stereotactic radiosurgery and concurrent paclitaxel. Am J Clin Oncol 23 155-159.
Leibel SA & Sheline GE 1987 Radiation therapy for neoplasms of the brain. J Neurosurg 66 1-22.
Li T, Zeng ZC, Wang L, Qiu SJ, Zhou JW, Zhi XT, Yu HH & Tang ZY 2011 Radiation enhances long-term metastasis potential of residual hepatocellular carcinoma in nude mice through TMPRSS4-induced epithelial-mesenchymal transition. Cancer Gene Ther.
Lim SK, Llaguno SR, McKay RM & Parada LF 2011 Glioblastoma multiforme: a perspective on recent findings in human cancer and mouse models. BMB Rep 44 158-164.
Ma BB, Bristow RG, Kim J & Siu LL 2003 Combined-modality treatment of solid tumors using radiotherapy and molecular targeted agents. J Clin Oncol 21 2760-2776.
Nieder C, Mehta MP & Jalali R 2009 Combined radio- and chemotherapy of brain tumours in adult patients. Clin Oncol (R Coll Radiol) 21 515-524.
Nogales E & Wang HW 2006 Structural intermediates in microtubule assembly and disassembly: how and why? Curr Opin Cell Biol 18 179-184.
Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E, Domingo D & Yahalom J 2001 A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res 61 439-444.
Prasad G & Haas-Kogan DA 2009 Radiation-induced gliomas. Expert Rev Neurother 9 1511-1517.
Pushkarev VM, Starenki DV, Saenko VA, Namba H, Kurebayashi J, Tronko MD & Yamashita S 2004 Molecular mechanisms of the effects of low concentrations of taxol in anaplastic thyroid cancer cells. Endocrinology 145 3143-3152.
Salvati M, Artico M, Caruso R, Rocchi G, Orlando ER & Nucci F 1991 A report on radiation-induced gliomas. Cancer 67 392-397.
Schneider T, Mawrin C, Scherlach C, Skalej M & Firsching R 2010 Gliomas in adults. Dtsch Arztebl Int 107 799-807; quiz 808.
Theys J, Jutten B, Habets R, Paesmans K, Groot AJ, Lambin P, Wouters BG, Lammering G & Vooijs M 2011 E-Cadherin loss associated with EMT promotes radioresistance in human tumor cells. Radiother Oncol.
Thiery JP 2002 Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2 442-454.
Thiery JP, Acloque H, Huang RY & Nieto MA 2009 Epithelial-mesenchymal transitions in development and disease. Cell 139 871-890.
Tran B & Rosenthal MA 2010 Survival comparison between glioblastoma multiforme and other incurable cancers. J Clin Neurosci 17 417-421.
Vauleon E, Avril T, Collet B, Mosser J & Quillien V 2010 Overview of cellular immunotherapy for patients with glioblastoma. Clin Dev Immunol 2010.
Xin H, Chen L, Gu J, Ren X, Wei Z, Luo J, Chen Y, Jiang X, Sha X & Fang X 2010 Enhanced anti-glioblastoma efficacy by PTX-loaded PEGylated poly(varepsilon-caprolactone) nanoparticles: In vitro and in vivo evaluation. Int J Pharm 402 238-247.
Yao KC, Komata T, Kondo Y, Kanzawa T, Kondo S & Germano IM 2003 Molecular r esponse of human glioblastoma multiforme cells to ionizing radiation: cell cycle arrest, modulation of the expression of cyclin-dependent kinase inhibitors, and autophagy. J Neurosurg 98 378-384.