簡易檢索 / 詳目顯示

研究生: 周伯印
Chou, Bo-Yin
論文名稱: 表面成長氧化鋅奈米線對透明導電薄膜穿透率與片電阻值之影響
Effects of Surface ZnO Nanowires on the Transmission and Sheet Resistance of Transparent Conducting Oxide Thin Flims
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 136
中文關鍵詞: AZO透明導電薄膜抗反射層氧化鋅奈米線化學溶液法穿透率片電阻值
外文關鍵詞: AZO Transparent Conducting Oxide Thin Flims, Antireftection layer, ZnO nanowires, chemical solution method, transmission, Sheet Resistance
相關次數: 點閱:206下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以磁控濺鍍 (RF-sputter)方式,使用氧化鋅(Aluminum-doped Zinc-Oxide , AZO)靶材在玻璃基板上沉積氧化鋅透明導電薄膜做為成長氧化鋅奈米線 (Zinc-Oxide Nanowires)的成核層。利用化學溶液法,將硝酸鋅水合物(Zn(NO3)2.6H2O, Zinc-nitrate hexahydrate)和六亞甲四酸(C6H12N4 , Hexamethylenetetramine, HMT)在特定的實驗參數下產生反應,並過飽和析出在AZO 透明導電薄膜。本研究中主要探討不同的氧化鋅奈米線成長條件對於AZO 透明導電薄膜的穿透率與片電阻值的影響,其中包含改變成長時間、莫耳濃度和成長溫度,觀察其成長氧化鋅奈米線之直徑、長度和分佈密度的變化。本實驗結果利用掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)觀察氧化鋅奈米線的表面形態,微結構方面藉由低掠角入射X光繞射來測定,而在穿透率量測與片電阻值量測分別使用PerkinElmer的LAMBDATM 950 UV/Vis/NIR光譜儀和MCP-T610的四點探針(Four-point probe)。經由本研究成果顯示,在反應濃度20mM下成長氧化鋅奈米線30分鐘,其改善穿透率效果以成長溫度60℃與90℃為佳。

    Radio frequency (RF) magnetron sputtering system was employed to deposit AZO film on glass substrate as seed layer, which was used to grow aligned one-dimensional nanowire of single-crystalline zinc oxide (ZnO) using chemical solution method at low-temperature. Aqueous solution of zinc nitrate hydrate and methenamine were used in this study. We wanted to know the effect of Surface ZnO nanowires on the transmission and sheet resistance of transparent conducting oxide thin flims with different grew condition of ZnO nanowires, including changes grow time, concentration, and temperature. Investigations were carried out to probe how the diameter, length, and number density of ZnO nanowires varied as the conditions changed. SEM were used to examine the morphology of the ZnO nanowires. The microstructure was investigated by glazing incident X-ray diffraction. Transmission and sheet resistance were measured by UV/Vis/NIR and Four-point probe method. This study showed that we can get ZnO nanowires with improving transmission in the chemical solution with the concentration 20 mM, the growing time 30 minutes, and at temperature about 60℃ and 90℃.

    摘要...............................................I Abstract..........................................II 誌謝...............................................III 總目錄.............................................IV 表目錄.............................................VII 圖目錄.............................................VIII 第一章 緒論.......................................1 1-1 透明導電薄膜................................1 1-2 氧化鋅奈米線當抗反射層........................3 1-3 研究動機與目的...............................3 第二章 文獻回顧....................................4 2-1 AZO薄膜的結構與性質..............................4 2-1-1 AZO薄膜結構...................................4 2-1-2 AZO薄膜的電學性質..............................7 2-1-3 AZO薄膜的光學性質..............................9 2-2 濺鍍理論........................................11 2-2-1 電漿原理......................................11 2-2-2 濺鍍原理......................................15 2-3 薄膜沈積原理.....................................17 2-3-1 沈積現象.......................................17 2-3-2 薄膜表面及截面結構..............................20 2-4 抗反射層原理.....................................22 2-5 製備氧化鋅奈米線方法..............................27 2-5-1 物理氣相法....................................27 2-5-2 化學氣相沈積法.................................28 2-5-3 鋅蒸氣氧化法...................................29 2-5-4 模板法........................................30 2-5-5 化學溶液法....................................31 第三章 實驗方法與分析儀器............................36 3-1 實驗流程圖.......................................36 3-2 基板裁切與清洗...................................37 3-3 射頻磁控濺鍍AZO薄膜...............................38 3-4 氧化鋅奈米線成長條件..............................38 3-5 特性分析........................................40 3-5-1表面形態分析....................................40 3-5-2薄膜結晶結構分析.................................40 3-5-3 電性分析......................................41 3-5-4 光學分析......................................41 第四章 結果與討論...................................43 4-1 氧化鋅奈米線成長在穿透性好的AZO透明導電膜............43 4-1-1 反應時間對穿透率的影響...........................43 4-1-2 反應濃度對穿透率的影響...........................54 4-1-3 反應溫度對穿透率的影響...........................64 4-2 氧化鋅奈米線成長在導電性好的AZO透明導電膜.............75 4-2-1 反應時間對穿透率的影響...........................75 4-2-2 反應濃度對穿透率的影響...........................86 4-2-3 反應溫度對穿透率的影響...........................96 4-3氧化鋅奈米線成長在穿透性好與導電性好的AZO透明導電膜比較..107 4-3-1 反應時間比較...................................107 4-3-2 反應濃度比較...................................114 4-3-3 反應溫度比較...................................121 第五章 結論........................................128 第六章 未來展望.....................................130 參考文獻.............................................131

    [1] 李玉華,”透明導電膜及其應用”,科儀新知,第十二卷第一期,p94-p102,1990
    [2] J. L. Vossen, “Transparent Conducting Films”, Physics of Thin Film, 9, p1-64, 1977
    [3] A. Suzuki, T. Matsushita, T. Aoki, A. Mori, M. Okuda, “Highly conducting transparent indium tin oxide films prepared by pulsed laser deposition”, Thin Solid Films, 411, p23-27, 2002
    [4] T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes”, Semicond. Sci. Technol., 20, S35, 2005
    [5] G. Brian Lewis and C. David Paine, “Applications and Processing of Transparent Conducting Oxides”, MRS Bulletin, 22, Aug. 2000
    [6] R. Wendt, K. Ellmer, K. Wiesemann, “Thermal power at a substrate during ZnO:Al thin film deposition in a planar magnetron sputtering system”, J. Appl. Phys., 82, p2115, 1997
    [7] H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, and T. Yao, “Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy”, Appl. Phys. Lett., 77, p3761 -p3763, 2000
    [8] V. Assuncão, E. Fortunato, A. Marques, A. Goncalves, I. Ferreira, H. Aguas, R. Martins, “New challenges on gallium-doped zinc oxide films prepared by r.f. magnetron sputtering”, Thin Solid Films, 442, p102-p106, 2003
    [9] V. Koss, A. Belkind, K. Memarzadeh, J. A. Woollam, “Determination of Optical Constants of Silver Layers in ZnO/Ag/ZnO Coatings Using Variable Angle Spectroscopic Ellipsometry”, Solar Energy Materials, Vol. 19, no. 1-2, p67-p78, Sept. 1989
    [10] M. Bender, W. Seelig, C. Daube, H. Frankenberger, B. Ocker, and J. Stollenwerk,“Dependence of film composition and thicknesses on optical and electrical properties of ITO-metal-ITO multilayers”, Thin Solid Films, 326, p67-p71, 1998
    [11] G. Leftheriotis, S. Papaefthimiou, and P. Yianoulis, “Development of multilayer transparent conductive coatings”, Solid State Ionics, 136–137, p655–p661, 2000
    [12] 劉思呈,“一維奈米氧化鋅結構之成長與特性分析” ,國立成功大學化學工程研究所博士論文,2004
    [13] K. L. Chopra, S. Magor and D. K. Pandya,“TRANSPARENT CONDUCTORS - A STATUS REVIEW”, Thin Solid Films, 102, p1-p46, 1983
    [14] H. L. Hartnagel, A. L. Dawar, A. K. Jain, C. Jagadish, “Semiconducting Transparent Thin Films”, Institute of Physics Publishing , 1995
    [15] 陳建華,“P-型透明導電膜應用於有機發光二極體”,國立成功大學化學工程研究所碩士論文,2003
    [16] R. G. Gordon,“Criteria for choosing transparent conductors”, MRS Bull., 25, p52-p57, 2000
    [17] 楊明輝,工業材料,179,134 ,1999
    [18] 楊錦章,“基礎濺鍍電漿”,電子發展月刊,68期,p13-40,1983
    [19] K.Wasa, “Handbook of sputter deposition technology”, p98, 1992
    [20] B. Chapman, “Glow discharge processes”, John Wiley & Sons. Inc. N.Y., 1980
    [21] F. Shinoki and A. Itoh, “Mechanism of rf reactive sputtering”, J. Appl. Phys., 46(8), p3381-p3384, 1975
    [22] B. Lewis and J. C. Anderson, “Nucleation and growth of thin films”, 1978
    [23] M. Harsdorff, “Thin influence of charged point defects and contamination of substrate surface on nucleation”, Thin solid films, 116, p55-p74, 1984
    [24] J. Venables, “Nucleation and growth of thin films”, Rep. Phys., 47, p399-p459, 1984
    [25] J. A. Thornton, “Influence of apparatus geometry and deposition condition on the structure and topography of thick sputtered coating”, J. Vac. Sci. Technol., 11(4), p666, 1974
    [26] J. A. Thornton, “Influence of substrate temparature and deposition rate on tructure of thick sputtered Cu coatings”, J. Vac. Sci. Technol., 12(4), p830, 1975
    [27] 李正中,“薄膜光學與鍍膜技術4th ed.”,2004
    [28] L. Ward, “The optical constants of bulk materials and films,2nd”, 1994
    [29] P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H. J. Choi, “Controlled growth of ZnO nanowires and their optical properties”, Advanced Functional Materials, 12(5), 323, 2002
    [30] Lyu, Seung Chul;Zhang, Ye;Ruh, Hyun;Lee, Hwack-Joo;Shim, Hyun-Wook; Suh, Eun-Kyung;Lee, Cheol Jin, “Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires”, Chemical Physics Letters, 363, 134, 2002
    [31] S. Y. Li, C. Y. Lee, T. Y. Tseng, “Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process”, Journal of Crystal Growth, 247, 357, 2003
    [32] M. J. Zheng, L. D. Zhang, G. H. Li, W. Z. Shen, “Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique”, Chemical Physics Letters, 363, 123, 2002
    [33] Michael H. Huang, “Room-temperature ultraviolet nanowire nanolasers”, Science, 292, 1897, 2001
    [34] Y. W. Wang, L. D. Zhang, G. Z. Wang, X. S. Peng, Z. Q. Chu, Liang,“Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties”, Journal of Crystal Growth, 234, 171, 2002
    [35] W. Lee, “Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation”, Acta Materialia, 52, 3949-3957, 2004
    [36] 廖泓洲,“氧化鋅奈米柱的後熱處理和氧化鎂摻雜研究”,國立交通大學材料科學與工程學系碩士論文,2005
    [37] Z. Zhou, W. Peng, S. Ke, H. Deng, “Tetrapod-shaped ZnO whisker and its composites”, Journal of Materials Processing Technology, 89, 415, 1999
    [38] Minoru Satoh, Norio Tanakn, Yoshikazu Ueda, Shigeo Ohshioand Hidetoshi Saitoh,“Epitaxial growth of zinc oxide whiskers by chemical-vapor deposition under atmospheric pressure”, Japanese Journal of Applied Physics, 38, L586, 1999
    [39] L. Vayssieres, K. Keis, A. Hagfeldt, S. Lindquist, “Three-dimensional array of highly oriented crystalline ZnO microtubes”, Chem. Mater., 13, 4395, 2001
    [40] J. Q. Hu, “Synthesis of uniform hexagonal prismatic ZnO whiskers”, Chemistry of Materials, 14, 1216, 2002
    [41] Y. C. Wang, “Preparation of nanosized ZnO arrays by electrophoretic deposition”, Electrochemical and Solid-State letters, 5, C53, 2002
    [42] Y. Chen, D. M. Bagnall, H. Koh, K. Park, Z. Zhu, T. Yao, “Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization”, J. Appl. Phys., 84, 3912, 1998
    [43] S. Yamabi and H. Iami, “Fabrication of Rutile TiO2 Foils with High Specific Surface Area via Heterogeneous Nucleation in Aqueous Solutions”, Chemistry Letters, 30, 220, 2002
    [44] S. Yamabi and H. Iami,“Crystal phase control for titanium dioxide films by direct deposition in aqueous solutions”, Chemistry of Materials, 14, 609, 2002
    [45] K. Tsukuma, T. Akiyama and Iami,“Liquid phase deposition film of tin oxide”, Journal of Non-Crystalline Solid, 210, 48, 1997
    [46] M. Abe and Y. Tamaura, “Ferrite-Plating in Aqueous Solution: A New Method for Preparing Magnetic Thin Film”, Jpn. J. Appl. Phys., 22, L511, 1983
    [47] M. Izaki and O. Shinohara,“Room-temperature deposition of defect-free magnetite film by chemical reaction from an aqueous solution”, Adv. Mater., 13, 142, 2001
    [48] Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa,“Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films”, Appl. Phys. Lett., 72, 3270, 1998
    [49] L. Vayssiers,“Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions”, Adv. Mater., 15, 464, 2003
    [50] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally and P. Yang,“Low-temperature wafer-scale production of ZnO nanowire arrays”, Angewandte Chemie International Edition, 42, 3031, 2003
    [51] Shingo Hirano, Nobuo Takeuchi, Shu Shimada, and Kyosuke Masuya,“Room-temperature nanowire ultraviolet lasers: An aqueous pathway for zinc oxide nanowires with low defect density”, J. Appl. Phys., 98, 094305, 2005
    [52] J. B. Baxter, A. M. Walker, K. van Ommering and E. S. Aydil,“Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells”, Nanotechnology, 17, S304-S312, 2006
    [53] Kuveshni Govender, David S. Boyle, Peter B. Kenway and Paul O’ Brien,“Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution”, J. Mater. Chem., 14, 2575-2591, 2004
    [54] R. B. M. Crossl, M. M. De Souza and E. M. Sankara Narayanan,“A low temperature combination method for the production of ZnO nanowires”, Nanotechnology, 16, 2188-2192, 2005
    [55] H. Q. Le and S. J. Chua, Y. W. Koh and K. P. Loh, Z. Chen, C. V. Thompson and E. A. Fitzgerald,“Growth of single crystal ZnO nanorods on GaN using an aqueous solution method”, Appl. Phys. Lett., 87, 101908, 2005

    下載圖示 校內:2020-08-30公開
    校外:2020-08-30公開
    QR CODE