簡易檢索 / 詳目顯示

研究生: 林冠伯
Lin, Kuan-Po
論文名稱: 微柱結構之滑移接觸數值分析
Numerical Analysis of Sliding Contact of Micro-Columns
指導教授: 林育芸
Lin, Yu-Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 89
中文關鍵詞: 微柱結構滑移接觸數值分析
外文關鍵詞: Micro-Columns, Sliding Contact, Numerical Analysis
相關次數: 點閱:64下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要以三維有限元素數值分析探討微柱結構與剛體間接觸滑動問題。在數值模型中分別以樑元素與實體元素模擬微柱結構之力學行為,並將數值模擬結果與尤拉撓曲理論、橡皮理論及尤拉挫曲理論相對照。探討微柱結構幾何參數如柱體傾斜角度φ0、柱頂形貌、及柱體深寬比λ等因素對柱體於接觸與滑移時之變形行為的影響。微柱結構在滑動之前所能承受之最大剪力不僅與微柱結構幾何參數有關,亦受剛體滑移方向和接觸摩擦係數μ影響。只有高深寬比且斷面小之柱體,其接觸滑動時受力與變形關係才可由橡皮理論預測。一般柱體接觸時端點旋轉角自由度隨接觸面積不同而有所限制,導致滑動時剪力值與理論預測值有出入。而微柱與圓球形剛體接觸滑移之情況則與接觸位置有關,其分析過程中之變異較為複雜。

    This research uses three-dimensional finite element analysis to study the sliding contact between the micro-columns and the rigid indenter. In the numerical models, solid elements and beam elements were used for describing the mechanical behavior of micro-columns respectively. The numerical results were compared with the Euler bending theory, the Elastica theory, and the Euler buckling analysis. The influence of the geometric parameters of micro-columns, such as tilt angle φ0, tip shape, and the aspect ratio λ, on the deformed behavior of micro-columns during contact and sliding were investigated. The maximum shear force which micro-columns can sustained before sliding depends not only on the geometric parameters of micro-columns, but also on the sliding direction of the rigid indenter and the contact friction coefficient μ. Only for the micro-columns of high aspect ratio and small cross section, their behavior during contact and sliding can be predicted by Elastica theory. In general, the degree of freedom in rotation at tip depends on the shape and contact area of micro-columns. This results in the sliding shear force is not the same as theoretical prediction. The situation is much more complicated for the sliding contact between the rigid spherical indenter and micro-columns, since the behavior for each column depends on its location in contact.

    摘要 I Abstract II 致謝 III 目錄 V 圖目錄 VI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 本文內容與簡介 2 第二章 文獻回顧 4 第三章 單柱受力變形行為模擬 12 3.1 元素特性 12 3.2 單根柱體受垂直力與水平力作用之變形分析 13 3.2-1 有限元素模型建立 14 3.2-2 小變形樑理論(尤拉撓曲理論) 14 3.2-3 大變形樑理論(橡皮理論) 16 3.2-3 數值模擬結果討論 22 3.3 柱挫曲分析 23 第四章 柱體接觸受力變形行為模擬 39 4.1 數值模型建立 39 4.2 接觸條件對單柱與平板接觸滑移之影響 41 4.3 柱體傾斜角度φ0對單柱與平板接觸滑移之影響 42 4.4 平板水平移動方向對單根傾斜微柱滑移之影響 44 4.5 圓球水平移動方向對單根傾斜微柱滑移之影響 46 4.6 柱頂形貌對單柱與平板接觸滑移之影響 48 4.7 以兩種元素模擬不同深寬比單柱接觸滑移之比較 50 4.8 柱體接觸滑移模擬與橡皮理論之比較 52 4.8-1 傾斜20°深寬比λ = 32柱體與平板接觸滑移分析 52 4.8-2 不同傾斜角柱體與平板接觸滑移之比較 52 4.8-3 傾斜45°柱體與圓球接觸滑移之比較 56 4.9 群柱與圓球接觸模擬結果 57 第五章 結論 84 參考文獻 87 自述 89

    [1] K. Autumn, Y. A. Liang, S. T. Hsieh, W. Zesch, W. P. Chan, T. W. Kenny, R. Fearing, and R. J. Full, "Adhesive force of a single gecko foot-hair," Nature, vol. 405, p. 681 (2000).

    [2] K. Autumn, A. Dittmore, D. Santos, M. Spenko, and M. Cutkosky, "Frictional adhesion: a new angle on gecko attachment," Journal of Experimental Biology, vol. 209, p. 3569 (2006).

    [3] K. Autumn, C. Majidi, R. E. Groff, A. Dittmore, and R. Fearing, "Effective elastic modulus of isolated gecko setal arrays," Journal of Experimental Biology, vol. 209, p. 3558 (2006).

    [4] S. Kim, B. Aksak, and M. Sitti, "Enhanced friction of elastomer microfiber adhesives with spatulate tips," Applied Physics Letters, vol. 91,221913 (2007).

    [5] J. Lee, C. Majidi, B. Schubert, and R. Fearing, "Sliding-induced adhesion of stiff polymer microfibre arrays. I. Macroscale behaviour," Journal of the Royal Society Interface, vol. 5, p. 835 (2008).

    [6] J. Lee, R. Fearing, and K. Komvopoulos, "Directional adhesion of gecko-inspired angled microfiber arrays," Applied Physics Letters, vol. 93,191910 (2008).

    [7] 鄭長貴, "具表面微結構之彈性體接觸問題數值分析," 國立成功大學土木工程學系,碩士論文 (2009).

    [8] 吳孟璇, "微結構之黏著接觸問題數值分析," 國立成功大學土木工程學系,碩士論文 (2010).

    [9] ABAQUS 6.9 User's Manual,SIMULIA (2009)

    [10] J. M. Gere, Mechanics of Materials, Nelson Thornes,Canada (2006).

    [11] K. E. Bisshopp, and D. C. Drucker, "Large Deflection of Cantilever Beams," Quarterly of Applied Mathematic, vol. 3, p. 272 (1945)

    下載圖示 校內:2016-08-24公開
    校外:2016-08-24公開
    QR CODE