| 研究生: |
林志曜 Lin, Chih-Yao |
|---|---|
| 論文名稱: |
用能及用水整合系統之同時最適化研究 Studies on Simultaneous Optimization of Integrated Energy and Water Systems |
| 指導教授: |
張珏庭
Chang, Chuei-Tin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 110 |
| 中文關鍵詞: | 同時最適化 、混合整數非線性規劃 、熱交換器網路 、水分配及熱交換網路 |
| 外文關鍵詞: | mixed integer nonlinear program, heat exchanger network, water-allocation and heat-exchange network, simultaneous optimization |
| 相關次數: | 點閱:135 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中我們發展出系統化的設計方法來合成(1)可直接和間接換熱之熱交換網路和(2)多溶質帶有熱整合之水分配網路。具體而言,我們採用了改良式的狀態-空間(State-Space)表示法去描述上述網路之結構特性,並據以建構以最小年度費用(TAC)為設計目標的混合整數非線性規劃(MINLP)模式。為了改善求解之品質及效率,我們也提出引入隨機產生確定型算法之可靠初值的程序,另外也使用聚類分析(cluster analysis)和人工互動的方式來增進求得最適解的機率,並發展出有效率的演算法來求取具有高可信度的MINLP全局最適解。最後,在本論文中提供數個例題來驗證提出方法的有效性及優點。
A systematic design methodology is developed in this work for simultaneously synthesizing (1) the direct and indirect heat-exchange network and (2) the multi-contaminant water-allocation and heat-exchange network (WAHEN) in any chemical process. Specifically, a modified state-space representation is adopted to capture the structural characteristics of integrated HEN or WAHEN, and a mixed-integer nonlinear program (MINLP) is formulated accordingly to minimize the TAC of the network design. To enhance the solution quality and efficiency, a stochastic perturbation procedure is introduced to generate reliable initial guesses for the deterministic optimization procedures, and cluster analysis and artificial interaction are applied to improve the solution. Also, an efficient algorithm is developed to obtain the global optimum of this MINLP model with high creditability. Several examples are presented in this paper to demonstrate the validity and advantages of the proposed approach.
Ahmad, S., Linnhoff, B., & Smith, R.,(1990). Cost optimal heat exchanger networks-2 targets and design for detailed capital cost models. Comput. & Chem. Engng., 14, 751.
Bagajewicz, M. J. & Manousiouthakis, V.,( 1992). On the mass/heat exchanger network representations of distillation networks. AIChE J. 38, 1769.
Bagajewicz, M., Pham, R. & Manousiouthakis, V.,(1998). On the state space approach to mass/heat exchanger network design. Chem. Eng. Sci. 53, 2595.
Bagajewicz, M., (2000). A review of recent design procedures for water networks in refineries and process Plants. Comput. & Chem. Engng., 24, 2093.
Bagajewicz, M. J., & Savelski, M. J., (2002). Energy efficient water utilization systems in process plants. Comput. & Chem. Engng., 26, 59.
Chang, C. T. & Yu T. P., (1988). Development of an evolutionary stream merging method in heat exchanger network design. Inst. Chem. Eng. Symp. Ser. 109, 159.
Chang, C. T., Chu, K. K. & Hwang, J. R., (1994). Application of the generalized stream structure in HEN synthesis. Comput. & Chem. Engng. 18, 345.
Chang, C. T. & Chen, L. C., (1997). The use of mixers in heat recovery system design. Chem. Eng. Sci. 52, 183.
Chang, C. T., & Li, B. H., (2005). Improved optimization strategies for generating practical water-usage and -treatment network structures. Ind. Eng. Chem. Res., 44, 3607.
Ciric, A. R. & Floudas, C. A., (1991). Heat exchanger network synthesis without decomposition. Comput. & Chem. Engng. 15, 385.
Dong, H.G., Lin, C. Y., & Chang, C. T., (2007). Simultaneous optimization strategy for synthesizing heat networks with multi-stream mixers, Chem. Eng. Res. Des. (1st revision)
Du, J., Meng, X. Q., Du, H. B., Yu, H. M., Fan, X. S., & Yao, P. J., (2004). Optimal design of water utilization network with energy integration in process industries. Chinese J. Chem. Eng., 12(2), 247.
Huang, C. H., Chang, C. T., Ling, H. C., & Chang, C. C., (1999). A mathematical programming model for water usage and treatment network design. Ind. Eng. Chem. Res., 38, 2666.
Ferris, M. C., 2005, MATLAB and GAMS: Interface optimization and visulization software, http://www.cs.wisc.edu/math-prog/matlab.html.
Floudas, C. A., Akrotirianakis, I. G., Caratzoulas, S., Meyer, C.A. and Kallrath, J., (2005). Global optimization in the 21st century: Advances and challenges. Comput. & Chem. Engng. 29, 1185.
Grossmann, I. E., (1991). Chemical Engineering Optimization Models with GAMS, CAChE Design Case Studies Series, Case No.6.
Kaufman L., & Rousseeuw, P. J., (1990). Finding Groups in Data. In: An Introduction to Cluster Analysis. John Wiley& Sons, New York.
Kuo, W.-C. J., & Smith, R. (1998). Designing for the interactions between water-use and effluent treatment. Trans. Int. Chem. Eng. Part A, 76, 287.
Papalexaddri, K. P., Pistikopoulos, E. N., (1994). A multi-period MINLP model for the synthesis of flexible heat and mass exchange network. Comput. & Chem. Engng. 18, 1125.
Linhoff, B., & Hindmarsh, E., (1983). The pinch design method for heat exchanger networks. Chem. Eng. Sci. 38, 745.
Linnhoff, B., & Ahmad, S., (1990). Cost optimum heat exchanger networks-1: Minimum energy and capital using simple model for capital cost. Comput. & Chem. Engng., 14, 729.
Linnhoff, B., (1994, Aug.). Use pinch analysis to knock down capital costs and emissions. Chem. Eng. Pro., 90(8), 33.
Mann, J. G., & Liu, Y. A., (1999). Industrial water reuse and wastewater minimization, McGraw-Hill, New York.
Papalexaddri, K. P., & Pistikopoulos, E. N., (1994). A multi-period MINLP model for the synthesis of flexible heat and mass exchange network. Comput. & Chem. Engng. 18, 1125.
Papoulias, S. A. & Grossmann, I. E., (1983). A structural optimization approach in process synthesis. II. Heat recovery networks. Comput. & Chem. Engng. 7, 707.
Pardalos, P. M., Romeijn, H. E., & Tuy, H., (2000). Recent developments and trends in global optimization, Journal of Computational and Applied Mathematics, 124, 209
Savelski, M., & Bagajewicz, M., (2000). On the optimality conditions of water utilization systems in process plants with single contaminants. Chem. Eng. Sc., 55(21), 5035.
Savulescu, L. E., & Smith, R., (1998). Simultaneous energy and water minimization. AIChE Annual Meeting, Miami.
Savulescu, L., Sorin, M., & Smith, R., (2002). Direct and indirect heat transfer in water network systems. Applied Thermal engineering. 22(8), 981.
Savulescu, L. E., Kim, J. K., & Smith, R. (2005). Studies on simultaneous energy and water minimization—Part I: Systems with no water re-use. Chem. Eng. Sci., 60, 3279.
Savulescu, L. E., Kim, J. K., & Smith, R., (2005). Studies on simultaneous energy and water minimization—PartⅡ: Systems with maximum re-use of water. Chem. Eng. Sci., 60, 3291.
Su, J. L., & Motard, R. L., (1984). Evolutinary synthesis of heat-exchanger networks Comput. & Chem. Engng., 8, 67.
Takama, N., Kuriyama, T., Shiroko, K., & Umeda, T., (1980). Optimal water allocation in a petroleum refinery. Comput. Chem. Eng., 4, 251.
Viswanathan, J. & Grossmann, I. E., (1990). A combined Penalty Function and Outer Approximation Method for MINLP Optimization, Comput. & Chem. Engng. 14, 769.
Wang, Y. P., & Smith, R., (1994a). Wastewater minimization. Chem. Eng. Sci., 49, 981.
Wang, Y. P., & Smith, R., (1994b). Design of distributed effluent treatment systems. Chem. Eng. Sci., 49, 3127.
Yee, T. F., Grossmann, I. E. & Kravanja, Z., (1990). Simultaneous optimization model for heat integratin – І: Area and energy targeting and modeling of multi-stream exchangers,” Comput. & Chem. Engng. 14, 1151.
Yee, T. F., & Grossmann, I. E., (1990). Simultaneous optimization model for heat integration – ІI: Heat exchanger network synthesis. Comput. & Chem. Engng., 14, 1165-1184.