簡易檢索 / 詳目顯示

研究生: 王昱丹
Wang, Yu-Dan
論文名稱: 肺癌中CAPG基因表現受啟動子甲基化之調控
Promoter methylation regulates CAPG expression in lung cancer
指導教授: 陳玉玲
Chen, Yuh-Ling
洪澤民
Hong, Tse-Ming
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 76
中文關鍵詞: CapGDNA甲基化表觀基因調控AP-1
外文關鍵詞: CapG, DNA methylation, AP-1
相關次數: 點閱:97下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • CapG 是由348 個胺基酸所組成的蛋白,屬於gelsolin 家族且具有調節肌動蛋白之功能。CapG 可藉由與肌動蛋白絲結合去調節肌動蛋白細胞骨架之活動性,進而參與細胞傳遞、受體媒介的胞膜變形運動、胞吞及細胞移行等作用。目前已經知道在一些具有高度轉移潛能的癌症中CapG 會有過度表現的情形,例如在肺腺癌細胞株CL1-5 即是如此,此現象指出CapG 可能與細胞移行及侵襲能力的調控有相關性。DNA 甲基化是上位基因調控機制的其中一種方式,而許多人類癌症的產生與基因上甲基化狀況的改變相關,在本實驗中,我們發現轉移能力較低的CL1-0 細胞經氧胞苷酸(deoxycytidine) 的類似物5-aza-2-deoxycytidine (5-Aza-dC) 處理之後,透過抑制甲基轉移酶(DNA methyltransferase) 的作用,CAPG 的mRNA 表現有顯著增加之情形。因此我們提出假說,CAPG 所受的上位基因調控與肺癌的轉移有關。除此之外,CL 肺腺癌細胞株中CAPG 的表現量與甲基化程度呈現反比關係。我們進一步以軟體分析並預測活化蛋白-1 (activator protein 1; AP-1) 可能會與CAPG 啟動子中受甲基化調控的區域結合進而調控CAPG 的基因表現。此研究結果證實FosB 以及JunD 確實能夠與CAPG 啟動子中的AP-1 結合位置結合,而將FosB 以及JunD 大量表達也能促使CapG 蛋白表現量增加。除此之外,將整合素Integrin α6/β4 大量表達也可促使CapG 蛋白表現量增加,因此我們認為此AP-1 所媒介之CAPG轉錄表現或許與Integrin α6/β4 之訊號傳遞有關。此研究將提出在肺癌轉移的過程中CAPG 的表現會受甲基化調控之證據,而CAPG 啟動子具變動性甲基化調控之區位的甲基化程度,或許可以成為肺癌侵襲程度及進程之指標,而對肺癌之診斷、預防跟治療有相當大的助益。

    CapG, a 348-amino acid gelsolin-family actin-modulating protein, can make important contributions to actin-driven motility by binding and capping actin filaments to further involve in cell signaling, receptor-mediated membrane ruffling, phagocytosis, and motility. It has been known that CapG is overexpressed in highly metastatic cancer cells such as CL1-5, a lung adenocarcinoma cell line, indicating that it may involve in the control of cell migration and invasion. DNA methylation is one of epigenetic regulation mechanisms and the methylation pattern is altered frequently in a wide variety of human cancers. Here we show that CL1-0, a low-metastatic lung cancer cell line, treated with 5-aza-2-deoxycytidine (5-AZA-dC) significantly increases CAPG mRNA. Therefore, we hypothesized that epigenetic regulation of CAPG expression is associated with lung cancer metastasis. The expression levels of CAPG are inversely correlated with its DNA methylation status in the lung cancer cell lines. Furthermore, the activator protein 1 (AP-1) was predicted may bind to the dynamic methylation-regulated region of CAPG promoter and regulate CAPG expression. We found that FosB and JunD are able to bind to the AP-1 site in the CAPG promoter region, and that both FosB and JunD overexpression lead to increased CapG expression. Additionally, we considered that AP-1-mediated CAPG expression may be related to Integrin α6/β4 signaling because Integrin α6/β4 overexpression elevated CapG expression. This study will provide evidence that DNA methylation regulates CAPG expression during cancer metastasis and the hypomethylated CAPG gene promoter may serve as an invasiveness and progression marker for lung cancer diagnosis, prevention, and treatment.

    目 錄 中 文 摘 要 I 英 文 摘 要 II 致 謝 III 目 錄 V 圖目錄 VII 附圖目錄 VIII 附錄目錄 IX 英文縮寫檢索表 X 緒 論 1 肺癌 1 CapG 表現與細胞移行及侵襲能力有關 2 表觀基因調控機制與癌症之間的關係 3 轉錄因子AP-1 調控癌症生成之相關基因進而參與癌症生成 5 研 究 動 機 7 材料與方法 8 一、癌細胞株(CL1-0、CL1-1、CL1-5、CL1-5F4) 培養 8 1-1 繼代培養 8 1-2 冷凍保存細胞 8 1-3 細胞解凍 9 1-4 細胞計數 9 二、 細胞內RNA表現分析 10 2-1 萃取RNA 10 2-2 RNA 定量 11 2-3 反轉錄酶反應 (Reverse Transcription) 11 2-4 聚合酶連鎖反應 (Polymerase Chain Reaction,PCR) 12 2-5 洋菜膠體電泳分析(Agarose gel electrophoresis) 14 2-6 即時定量聚合酶連鎖反應 (Real-time PCR,qRT-PCR) 15 三、細胞蛋白質表現分析 16 3-1 細胞蛋白質萃取 16 3-2 蛋白質定量 16 3-3 西方墨點法(Western blot assay) 17 3-3-1 蛋白質樣品之準備 17 3-3-2 SDS-聚丙烯胺膠體電泳 (SDS-polyacryamide gel electrophoresis) 17 3-3-3 轉印 (Electrotransfer) 19 3-3-4 免疫轉漬法 (Immunoblotting) 19 四、DNA甲基化調控分析之相關實驗 21 4-1 細胞之5-Aza-2’-deoxycytidine (5-Aza-dC) 處理 21 4-2 亞硫酸鹽定序 (Bisulfite sequencing) 21 4-2-1 動物細胞基因體DNA (Genomic DNA)之萃取 21 4-2-2 亞硫酸鹽轉換 (Bisulfite conversion) 22 4-2-3 亞硫酸鹽序列之PCR (Bisulfite sequence PCR,BSP) 23 4-2-4 TA 選殖 (TA cloning) 24 4-2-5 大腸桿菌勝任細胞之轉型作用 (Transformation) 25 4-3 Bisulfite pyrosequencing 25 4-4 甲基化特異性PCR (Methylation-specific PCR,MSP) 26 五、pGL3-CAPG 載體構築 28 六、質體之細胞轉染 (Transfection) 29 七、冷光酶活性分析 (Luciferase reporter assay) 30 八、染色體免疫沉澱法 (Chromatin immunoprecipitation,ChIP) 31 九、抑制表現病毒系統之製備 (shRNA system) 32 十、細胞表面接受體分析 (Flow cytometry) 33 實 驗 結 果 35 一、 CAPG 的mRNA在具有高度轉移潛能之肺腺癌細胞株(CL1-5、CL1-5F4) 中有非常高度的表現。 35 二、 以5-Aza-dC 處理CL1-0 細胞,可顯著增進其CAPG 之mRNA表現量。 35 三、CL1-0 細胞之CAPG 啟動子中CpG Island 受高度甲基化調控,其中包含一段受動態甲基化調控之序列。 36 四、探討受動態甲基化調控之CAPG 啟動子序列,並預測其中含有轉錄因子AP-1 結合區。 37 五、CL1-0 細胞的DNA中,轉錄因子AP-1 結合區附近的六個CpG dinucleotides 經甲基化定量,也呈現出高度甲基化之情形。 38 六、證實AP-1 蛋白質FosB及JunD在CAPG 轉錄調控中扮演重要的角色。 38 七、過度表現轉錄因子AP-1 會增加CL1-0 細胞株中CapG 蛋白質之表現,反之,有效抑制AP-1 則減少CL1-5 細胞株中CapG 蛋白質表現量。 39 八、透過上游整合素Integrin α6/β4 訊號傳遞,可促進轉錄因子AP-1 對於甲基化所媒介的CAPG轉錄調控,進而導致CapG表現。 39 討 論 41 結 論 46 參 考 資 料 65 自 述 76 圖目錄 圖 一、 CAPG在人類肺腺癌細胞株間的表現,具有侵襲及移行能力較強的細胞株有較高度的表現。 47 圖 二、 5-Aza-dC可顯著增進CL1-0細胞之CAPG mRNA表現量。 48 圖 三、 以亞硫酸鹽定序(Bisulfite sequencing) 及甲基化特異性PCR (Methylation-specific PCR,MSP)分析,在不同細胞株中CAPG啟動子之CpG Island甲基化現象。 49 圖 四、 為CAPG 的三種transcripts 設計可專一區分的引子進行RT-PCR 以分析在人類肺腺癌細胞株(CL1-0、CL1-5) 中主要表現的形態。 50 圖 五、 受動態甲基化調控之序列以軟體預測到AP-1轉錄因子結合區,此圖包含CAPG啟動子中CpG Island 分布及AP-1 結合位距離轉錄起始點之位置對照。 52 圖 六、 Bisulfite pyrosequencing 定量分析再次證實CAPG 的CpG Islands中受動態甲基化調控之序列在CL1-0為高度甲基化,而CL1-5為低度甲基化。 54 圖 七、 pGL3-CAPG 之載體構築。 55 圖 八、 pGL3-CAPG 之載體構築並進行冷光酶活性分析(Luciferase reporter assay),僅有在JunD 及FosB 共同過度表現時能大幅度促進CAPG 啟動子之活性。 56 圖 九、 以染色質免疫沉澱法(Chromatin immunoprecipitation assay, ChIP)證實FosB 以及JunD 於CL1-5 細胞內確實會與CAPG 啟動子結合。 57 圖 十、過度表現轉錄因子AP-1 於CL1-0細胞株,會導致CapG蛋白質表現量增加。 58 圖 十一、 有效抑制JunD表現時,會減少CapG表現量。 59 圖 十二、 整合素Integrin α6/β4 過度表現會增加CL1-0細胞內CapG的表現量。 60 附圖目錄 附圖 一、 CAPG 啟動子中的CpG 島。 61 附圖 二、 Ensembl Genome Browser 網站所列出之CAPG 的三種transcripts 類型。 62 附圖 三、 CAPG 在口腔癌細胞株的mRNA 表現量也與CAPG 啟動子支甲基化程度相關。 63 附圖 四、 分析肺腺癌細胞中AP-1 組成蛋白之基因表現及整合素Integrin α6及 β4之表現。 64 附錄目錄 附錄 一:抗體 73 附錄 二:儀器 75

    Angel, P., Imagawa, M., Chiu, R., Stein, B., Imbra, R.J., Rahmsdorf, H.J., Jonat, C., Herrlich, P., and Karin, M. (1987). Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell 49, 729-739.

    Bahassi el, M., Karyala, S., Tomlinson, C.R., Sartor, M.A., Medvedovic, M., and Hennigan, R.F. (2004). Critical regulation of genes for tumor cell migration by AP-1. Clinical & experimental metastasis 21, 293-304.

    Bartel, D.P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233.

    Baylin, S.B., Herman, J.G., Graff, J.R., Vertino, P.M., and Issa, J.P. (1998). Alterations in DNA methylation: a fundamental aspect of neoplasia. Advances in cancer research 72, 141-196.

    Baylin, S.B., Hoppener, J.W., de Bustros, A., Steenbergh, P.H., Lips, C.J., and Nelkin, B.D. (1986). DNA methylation patterns of the calcitonin gene in human lung cancers and lymphomas. Cancer research 46, 2917-2922.

    Bestor, T.H. (2000). The DNA methyltransferases of mammals. Human molecular genetics 9, 2395-2402.

    Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes & development 16, 6-21.

    Boyes, J., and Bird, A. (1991). DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell 64, 1123-1134.

    Cedar, H., and Razin, A. (1990). DNA methylation and development. Biochimica et biophysica acta 1049, 1-8.

    Chen, M., Sinha, M., Luxon, B.A., Bresnick, A.R., and O'Connor, K.L. (2009). Integrin alpha6beta4 controls the expression of genes associated with cell motility, invasion, and metastasis, including S100A4/metastasin. The Journal of biological
    chemistry 284, 1484-1494.

    Chen, M.W., Hua, K.T., Kao, H.J., Chi, C.C., Wei, L.H., Johansson, G., Shiah, S.G., Chen, P.S., Jeng, Y.M., Cheng, T.Y., et al. H3K9 histone methyltransferase G9a promotes lung cancer invasion and metastasis by silencing the cell adhesion molecule
    Ep-CAM. Cancer research 70, 7830-7840.

    Curran, T., and Franza, B.R., Jr. (1988). Fos and Jun: the AP-1 connection. Cell 55, 395-397.

    Dabiri, G.A., Young, C.L., Rosenbloom, J., and Southwick, F.S. (1992). Molecular cloning of human macrophage capping protein cDNA. A unique member of the gelsolin/villin family expressed primarily in macrophages. The Journal of biological chemistry 267, 16545-16552.

    Feinberg, A.P., and Vogelstein, B. (1983). Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301, 89-92.

    Feng, Q., and Zhang, Y. (2001). The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes. Genes & development 15, 827-832.

    Frigo, D.E., Tang, Y., Beckman, B.S., Scandurro, A.B., Alam, J., Burow, M.E., and McLachlan, J.A. (2004). Mechanism of AP-1-mediated gene expression by select organochlorines through the p38 MAPK pathway. Carcinogenesis 25, 249-261.

    Gama-Sosa, M.A., Slagel, V.A., Trewyn, R.W., Oxenhandler, R., Kuo, K.C., Gehrke, C.W., and Ehrlich, M. (1983). The 5-methylcytosine content of DNA from human tumors. Nucleic acids research 11, 6883-6894.

    Hendrich, B., and Bird, A. (1998). Identification and characterization of a family of mammalian methyl-CpG binding proteins. Molecular and cellular biology 18, 6538-6547.

    Herman, J.G. (1999). Hypermethylation of tumor suppressor genes in cancer. Seminars in cancer biology 9, 359-367.

    Hubert, T., Van Impe, K., Vandekerckhove, J., and Gettemans, J. (2009). The actin-capping protein CapG localizes to microtubule-dependent organelles during the cell cycle. Biochemical and biophysical research communications 380, 166-170.

    Janmey, P.A. (1998). The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiological reviews 78, 763-781.

    Jones, P.A., and Baylin, S.B. (2002). The fundamental role of epigenetic events in cancer. Nature reviews 3, 415-428.

    Jones, P.A., and Laird, P.W. (1999). Cancer epigenetics comes of age. Nature genetics 21, 163-167.

    Lai, E.C. (2002). Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation. Nature genetics 30, 363-364.

    Lal, A., Lash, A.E., Altschul, S.F., Velculescu, V., Zhang, L., McLendon, R.E., Marra, M.A., Prange, C., Morin, P.J., Polyak, K., et al. (1999). A public database for gene expression in human cancers. Cancer research 59, 5403-5407.

    Lee, J.H., Voo, K.S., and Skalnik, D.G. (2001). Identification and characterization of the DNA binding domain of CpG-binding protein. The Journal of biological chemistry 276, 44669-44676.

    Lembo, F., Pero, R., Angrisano, T., Vitiello, C., Iuliano, R., Bruni, C.B., and Chiariotti, L. (2003). MBDin, a novel MBD2-interacting protein, relieves MBD2 repression potential and reactivates transcription from methylated promoters. Molecular and cellular biology 23, 1656-1665.

    Li, J.J., Westergaard, C., Ghosh, P., and Colburn, N.H. (1997). Inhibitors of both nuclear factor-kappaB and activator protein-1 activation block the neoplastic transformation response. Cancer research 57, 3569-3576.

    Lopez-Serra, L., Ballestar, E., Fraga, M.F., Alaminos, M., Setien, F., and Esteller, M. (2006). A profile of methyl-CpG binding domain protein occupancy of hypermethylated promoter CpG islands of tumor suppressor genes in human cancer. Cancer research 66, 8342-8346.

    Maniatis, T., and Reed, R. (2002). An extensive network of coupling among gene expression machines. Nature 416, 499-506.

    Melki, J.R., Vincent, P.C., and Clark, S.J. (1999). Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia. Cancer research 59, 3730-3740.

    Moore, M.J., and Proudfoot, N.J. (2009). Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136, 688-700.

    Muller, R., Bravo, R., Burckhardt, J., and Curran, T. (1984). Induction of c-fos gene and protein by growth factors precedes activation of c-myc. Nature 312, 716-720.

    Nakao, M., Matsui, S., Yamamoto, S., Okumura, K., Shirakawa, M., and Fujita, N. (2001). Regulation of transcription and chromatin by methyl-CpG binding protein MBD1. Brain & development 23 Suppl 1, S174-176.

    Nilsen, T.W. (2003). The spliceosome: the most complex macromolecular machine in the cell? Bioessays 25, 1147-1149.

    Ozanne, B.W., Spence, H.J., McGarry, L.C., and Hennigan, R.F. (2007). Transcription factors control invasion: AP-1 the first among equals. Oncogene 26, 1-10.

    Patra, S.K., Patra, A., Zhao, H., and Dahiya, R. (2002). DNA methyltransferase and demethylase in human prostate cancer. Molecular carcinogenesis 33, 163-171.

    Reik, W., Dean, W., and Walter, J. (2001). Epigenetic reprogramming in mammalian development. Science (New York, NY 293, 1089-1093.

    Renz, M., Betz, B., Niederacher, D., Bender, H.G., and Langowski, J. (2008). Invasive breast cancer cells exhibit increased mobility of the actin-binding protein CapG. International journal of cancer 122, 1476-1482.

    Rodriguez, O.C., Schaefer, A.W., Mandato, C.A., Forscher, P., Bement, W.M., and Waterman-Storer, C.M. (2003). Conserved microtubule-actin interactions in cell movement and morphogenesis. Nature cell biology 5, 599-609.

    Silacci, P., Mazzolai, L., Gauci, C., Stergiopulos, N., Yin, H.L., and Hayoz, D. (2004). Gelsolin superfamily proteins: key regulators of cellular functions. Cell Mol Life Sci 61, 2614-2623.

    Smith, S.S. (2000). Gilbert's conjecture: the search for DNA (cytosine-5) demethylases and the emergence of new functions for eukaryotic DNA (cytosine-5) methyltransferases. Journal of molecular biology 302, 1-7.

    Southwick, F.S., and DiNubile, M.J. (1986). Rabbit alveolar macrophages contain a Ca2+-sensitive, 41,000-dalton protein which reversibly blocks the "barbed" ends of actin filaments but does not sever them. The Journal of biological chemistry 261, 14191-14195.

    Stulemeijer, I.J., and Joosten, M.H. (2008). Post-translational modification of host proteins in pathogen-triggered defence signalling in plants. Molecular plant pathology 9, 545-560.

    Sureau, A., Gattoni, R., Dooghe, Y., Stevenin, J., and Soret, J. (2001). SC35 autoregulates its expression by promoting splicing events that destabilize its mRNAs. The EMBO journal 20, 1785-1796.

    Suzuki, H., Gabrielson, E., Chen, W., Anbazhagan, R., van Engeland, M., Weijenberg, M.P., Herman, J.G., and Baylin, S.B. (2002). A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nature genetics 31, 141-149.

    Tai, K.Y., Shiah, S.G., Shieh, Y.S., Kao, Y.R., Chi, C.Y., Huang, E., Lee, H.S., Chang, L.C., Yang, P.C., and Wu, C.W. (2007). DNA methylation and histone modification regulate silencing of epithelial cell adhesion molecule for tumor invasion and progression. Oncogene 26, 3989-3997.

    Van den Abbeele, A., De Corte, V., Van Impe, K., Bruyneel, E., Boucherie, C., Bracke, M., Vandekerckhove, J., and Gettemans, J. (2007). Downregulation of gelsolin family proteins counteracts cancer cell invasion in vitro. Cancer letters 255, 57-70.

    Van Ginkel, P.R., Gee, R.L., Walker, T.M., Hu, D.N., Heizmann, C.W., and Polans, A.S. (1998). The identification and differential expression of calcium-binding proteins associated with ocular melanoma. Biochimica et biophysica acta 1448, 290-297.

    Verma, I.M., and Sassone-Corsi, P. (1987). Proto-oncogene fos: complex but versatile regulation. Cell 51, 513-514.

    Wang, E.T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore,
    S.F., Schroth, G.P., and Burge, C.B. (2008). Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470-476.

    Whitmarsh, A.J., and Davis, R.J. (1996). Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. Journal of molecular medicine (Berlin, Germany) 74, 589-607.

    Witke, W., Li, W., Kwiatkowski, D.J., and Southwick, F.S. (2001). Comparisons of CapG and gelsolin-null macrophages: demonstration of a unique role for CapG in receptor-mediated ruffling, phagocytosis, and vesicle rocketing. The Journal of cell biology 154, 775-784.

    Young, C.L., Southwick, F.S., and Weber, A. (1990). Kinetics of the interaction of a 41-kilodalton macrophage capping protein with actin: promotion of nucleation during prolongation of the lag period. Biochemistry 29, 2232-2240.

    Yu, F.X., Johnston, P.A., Sudhof, T.C., and Yin, H.L. (1990). gCap39, a calcium ion- and polyphosphoinositide-regulated actin capping protein. Science (New York, NY 250, 1413-1415.

    下載圖示 校內:2021-01-01公開
    校外:2021-01-01公開
    QR CODE