| 研究生: |
王昱丹 Wang, Yu-Dan |
|---|---|
| 論文名稱: |
肺癌中CAPG基因表現受啟動子甲基化之調控 Promoter methylation regulates CAPG expression in lung cancer |
| 指導教授: |
陳玉玲
Chen, Yuh-Ling 洪澤民 Hong, Tse-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | CapG 、DNA甲基化 、表觀基因調控 、AP-1 |
| 外文關鍵詞: | CapG, DNA methylation, AP-1 |
| 相關次數: | 點閱:97 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
CapG 是由348 個胺基酸所組成的蛋白,屬於gelsolin 家族且具有調節肌動蛋白之功能。CapG 可藉由與肌動蛋白絲結合去調節肌動蛋白細胞骨架之活動性,進而參與細胞傳遞、受體媒介的胞膜變形運動、胞吞及細胞移行等作用。目前已經知道在一些具有高度轉移潛能的癌症中CapG 會有過度表現的情形,例如在肺腺癌細胞株CL1-5 即是如此,此現象指出CapG 可能與細胞移行及侵襲能力的調控有相關性。DNA 甲基化是上位基因調控機制的其中一種方式,而許多人類癌症的產生與基因上甲基化狀況的改變相關,在本實驗中,我們發現轉移能力較低的CL1-0 細胞經氧胞苷酸(deoxycytidine) 的類似物5-aza-2-deoxycytidine (5-Aza-dC) 處理之後,透過抑制甲基轉移酶(DNA methyltransferase) 的作用,CAPG 的mRNA 表現有顯著增加之情形。因此我們提出假說,CAPG 所受的上位基因調控與肺癌的轉移有關。除此之外,CL 肺腺癌細胞株中CAPG 的表現量與甲基化程度呈現反比關係。我們進一步以軟體分析並預測活化蛋白-1 (activator protein 1; AP-1) 可能會與CAPG 啟動子中受甲基化調控的區域結合進而調控CAPG 的基因表現。此研究結果證實FosB 以及JunD 確實能夠與CAPG 啟動子中的AP-1 結合位置結合,而將FosB 以及JunD 大量表達也能促使CapG 蛋白表現量增加。除此之外,將整合素Integrin α6/β4 大量表達也可促使CapG 蛋白表現量增加,因此我們認為此AP-1 所媒介之CAPG轉錄表現或許與Integrin α6/β4 之訊號傳遞有關。此研究將提出在肺癌轉移的過程中CAPG 的表現會受甲基化調控之證據,而CAPG 啟動子具變動性甲基化調控之區位的甲基化程度,或許可以成為肺癌侵襲程度及進程之指標,而對肺癌之診斷、預防跟治療有相當大的助益。
CapG, a 348-amino acid gelsolin-family actin-modulating protein, can make important contributions to actin-driven motility by binding and capping actin filaments to further involve in cell signaling, receptor-mediated membrane ruffling, phagocytosis, and motility. It has been known that CapG is overexpressed in highly metastatic cancer cells such as CL1-5, a lung adenocarcinoma cell line, indicating that it may involve in the control of cell migration and invasion. DNA methylation is one of epigenetic regulation mechanisms and the methylation pattern is altered frequently in a wide variety of human cancers. Here we show that CL1-0, a low-metastatic lung cancer cell line, treated with 5-aza-2-deoxycytidine (5-AZA-dC) significantly increases CAPG mRNA. Therefore, we hypothesized that epigenetic regulation of CAPG expression is associated with lung cancer metastasis. The expression levels of CAPG are inversely correlated with its DNA methylation status in the lung cancer cell lines. Furthermore, the activator protein 1 (AP-1) was predicted may bind to the dynamic methylation-regulated region of CAPG promoter and regulate CAPG expression. We found that FosB and JunD are able to bind to the AP-1 site in the CAPG promoter region, and that both FosB and JunD overexpression lead to increased CapG expression. Additionally, we considered that AP-1-mediated CAPG expression may be related to Integrin α6/β4 signaling because Integrin α6/β4 overexpression elevated CapG expression. This study will provide evidence that DNA methylation regulates CAPG expression during cancer metastasis and the hypomethylated CAPG gene promoter may serve as an invasiveness and progression marker for lung cancer diagnosis, prevention, and treatment.
Angel, P., Imagawa, M., Chiu, R., Stein, B., Imbra, R.J., Rahmsdorf, H.J., Jonat, C., Herrlich, P., and Karin, M. (1987). Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell 49, 729-739.
Bahassi el, M., Karyala, S., Tomlinson, C.R., Sartor, M.A., Medvedovic, M., and Hennigan, R.F. (2004). Critical regulation of genes for tumor cell migration by AP-1. Clinical & experimental metastasis 21, 293-304.
Bartel, D.P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233.
Baylin, S.B., Herman, J.G., Graff, J.R., Vertino, P.M., and Issa, J.P. (1998). Alterations in DNA methylation: a fundamental aspect of neoplasia. Advances in cancer research 72, 141-196.
Baylin, S.B., Hoppener, J.W., de Bustros, A., Steenbergh, P.H., Lips, C.J., and Nelkin, B.D. (1986). DNA methylation patterns of the calcitonin gene in human lung cancers and lymphomas. Cancer research 46, 2917-2922.
Bestor, T.H. (2000). The DNA methyltransferases of mammals. Human molecular genetics 9, 2395-2402.
Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes & development 16, 6-21.
Boyes, J., and Bird, A. (1991). DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell 64, 1123-1134.
Cedar, H., and Razin, A. (1990). DNA methylation and development. Biochimica et biophysica acta 1049, 1-8.
Chen, M., Sinha, M., Luxon, B.A., Bresnick, A.R., and O'Connor, K.L. (2009). Integrin alpha6beta4 controls the expression of genes associated with cell motility, invasion, and metastasis, including S100A4/metastasin. The Journal of biological
chemistry 284, 1484-1494.
Chen, M.W., Hua, K.T., Kao, H.J., Chi, C.C., Wei, L.H., Johansson, G., Shiah, S.G., Chen, P.S., Jeng, Y.M., Cheng, T.Y., et al. H3K9 histone methyltransferase G9a promotes lung cancer invasion and metastasis by silencing the cell adhesion molecule
Ep-CAM. Cancer research 70, 7830-7840.
Curran, T., and Franza, B.R., Jr. (1988). Fos and Jun: the AP-1 connection. Cell 55, 395-397.
Dabiri, G.A., Young, C.L., Rosenbloom, J., and Southwick, F.S. (1992). Molecular cloning of human macrophage capping protein cDNA. A unique member of the gelsolin/villin family expressed primarily in macrophages. The Journal of biological chemistry 267, 16545-16552.
Feinberg, A.P., and Vogelstein, B. (1983). Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301, 89-92.
Feng, Q., and Zhang, Y. (2001). The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes. Genes & development 15, 827-832.
Frigo, D.E., Tang, Y., Beckman, B.S., Scandurro, A.B., Alam, J., Burow, M.E., and McLachlan, J.A. (2004). Mechanism of AP-1-mediated gene expression by select organochlorines through the p38 MAPK pathway. Carcinogenesis 25, 249-261.
Gama-Sosa, M.A., Slagel, V.A., Trewyn, R.W., Oxenhandler, R., Kuo, K.C., Gehrke, C.W., and Ehrlich, M. (1983). The 5-methylcytosine content of DNA from human tumors. Nucleic acids research 11, 6883-6894.
Hendrich, B., and Bird, A. (1998). Identification and characterization of a family of mammalian methyl-CpG binding proteins. Molecular and cellular biology 18, 6538-6547.
Herman, J.G. (1999). Hypermethylation of tumor suppressor genes in cancer. Seminars in cancer biology 9, 359-367.
Hubert, T., Van Impe, K., Vandekerckhove, J., and Gettemans, J. (2009). The actin-capping protein CapG localizes to microtubule-dependent organelles during the cell cycle. Biochemical and biophysical research communications 380, 166-170.
Janmey, P.A. (1998). The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiological reviews 78, 763-781.
Jones, P.A., and Baylin, S.B. (2002). The fundamental role of epigenetic events in cancer. Nature reviews 3, 415-428.
Jones, P.A., and Laird, P.W. (1999). Cancer epigenetics comes of age. Nature genetics 21, 163-167.
Lai, E.C. (2002). Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation. Nature genetics 30, 363-364.
Lal, A., Lash, A.E., Altschul, S.F., Velculescu, V., Zhang, L., McLendon, R.E., Marra, M.A., Prange, C., Morin, P.J., Polyak, K., et al. (1999). A public database for gene expression in human cancers. Cancer research 59, 5403-5407.
Lee, J.H., Voo, K.S., and Skalnik, D.G. (2001). Identification and characterization of the DNA binding domain of CpG-binding protein. The Journal of biological chemistry 276, 44669-44676.
Lembo, F., Pero, R., Angrisano, T., Vitiello, C., Iuliano, R., Bruni, C.B., and Chiariotti, L. (2003). MBDin, a novel MBD2-interacting protein, relieves MBD2 repression potential and reactivates transcription from methylated promoters. Molecular and cellular biology 23, 1656-1665.
Li, J.J., Westergaard, C., Ghosh, P., and Colburn, N.H. (1997). Inhibitors of both nuclear factor-kappaB and activator protein-1 activation block the neoplastic transformation response. Cancer research 57, 3569-3576.
Lopez-Serra, L., Ballestar, E., Fraga, M.F., Alaminos, M., Setien, F., and Esteller, M. (2006). A profile of methyl-CpG binding domain protein occupancy of hypermethylated promoter CpG islands of tumor suppressor genes in human cancer. Cancer research 66, 8342-8346.
Maniatis, T., and Reed, R. (2002). An extensive network of coupling among gene expression machines. Nature 416, 499-506.
Melki, J.R., Vincent, P.C., and Clark, S.J. (1999). Concurrent DNA hypermethylation of multiple genes in acute myeloid leukemia. Cancer research 59, 3730-3740.
Moore, M.J., and Proudfoot, N.J. (2009). Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136, 688-700.
Muller, R., Bravo, R., Burckhardt, J., and Curran, T. (1984). Induction of c-fos gene and protein by growth factors precedes activation of c-myc. Nature 312, 716-720.
Nakao, M., Matsui, S., Yamamoto, S., Okumura, K., Shirakawa, M., and Fujita, N. (2001). Regulation of transcription and chromatin by methyl-CpG binding protein MBD1. Brain & development 23 Suppl 1, S174-176.
Nilsen, T.W. (2003). The spliceosome: the most complex macromolecular machine in the cell? Bioessays 25, 1147-1149.
Ozanne, B.W., Spence, H.J., McGarry, L.C., and Hennigan, R.F. (2007). Transcription factors control invasion: AP-1 the first among equals. Oncogene 26, 1-10.
Patra, S.K., Patra, A., Zhao, H., and Dahiya, R. (2002). DNA methyltransferase and demethylase in human prostate cancer. Molecular carcinogenesis 33, 163-171.
Reik, W., Dean, W., and Walter, J. (2001). Epigenetic reprogramming in mammalian development. Science (New York, NY 293, 1089-1093.
Renz, M., Betz, B., Niederacher, D., Bender, H.G., and Langowski, J. (2008). Invasive breast cancer cells exhibit increased mobility of the actin-binding protein CapG. International journal of cancer 122, 1476-1482.
Rodriguez, O.C., Schaefer, A.W., Mandato, C.A., Forscher, P., Bement, W.M., and Waterman-Storer, C.M. (2003). Conserved microtubule-actin interactions in cell movement and morphogenesis. Nature cell biology 5, 599-609.
Silacci, P., Mazzolai, L., Gauci, C., Stergiopulos, N., Yin, H.L., and Hayoz, D. (2004). Gelsolin superfamily proteins: key regulators of cellular functions. Cell Mol Life Sci 61, 2614-2623.
Smith, S.S. (2000). Gilbert's conjecture: the search for DNA (cytosine-5) demethylases and the emergence of new functions for eukaryotic DNA (cytosine-5) methyltransferases. Journal of molecular biology 302, 1-7.
Southwick, F.S., and DiNubile, M.J. (1986). Rabbit alveolar macrophages contain a Ca2+-sensitive, 41,000-dalton protein which reversibly blocks the "barbed" ends of actin filaments but does not sever them. The Journal of biological chemistry 261, 14191-14195.
Stulemeijer, I.J., and Joosten, M.H. (2008). Post-translational modification of host proteins in pathogen-triggered defence signalling in plants. Molecular plant pathology 9, 545-560.
Sureau, A., Gattoni, R., Dooghe, Y., Stevenin, J., and Soret, J. (2001). SC35 autoregulates its expression by promoting splicing events that destabilize its mRNAs. The EMBO journal 20, 1785-1796.
Suzuki, H., Gabrielson, E., Chen, W., Anbazhagan, R., van Engeland, M., Weijenberg, M.P., Herman, J.G., and Baylin, S.B. (2002). A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nature genetics 31, 141-149.
Tai, K.Y., Shiah, S.G., Shieh, Y.S., Kao, Y.R., Chi, C.Y., Huang, E., Lee, H.S., Chang, L.C., Yang, P.C., and Wu, C.W. (2007). DNA methylation and histone modification regulate silencing of epithelial cell adhesion molecule for tumor invasion and progression. Oncogene 26, 3989-3997.
Van den Abbeele, A., De Corte, V., Van Impe, K., Bruyneel, E., Boucherie, C., Bracke, M., Vandekerckhove, J., and Gettemans, J. (2007). Downregulation of gelsolin family proteins counteracts cancer cell invasion in vitro. Cancer letters 255, 57-70.
Van Ginkel, P.R., Gee, R.L., Walker, T.M., Hu, D.N., Heizmann, C.W., and Polans, A.S. (1998). The identification and differential expression of calcium-binding proteins associated with ocular melanoma. Biochimica et biophysica acta 1448, 290-297.
Verma, I.M., and Sassone-Corsi, P. (1987). Proto-oncogene fos: complex but versatile regulation. Cell 51, 513-514.
Wang, E.T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore,
S.F., Schroth, G.P., and Burge, C.B. (2008). Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470-476.
Whitmarsh, A.J., and Davis, R.J. (1996). Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. Journal of molecular medicine (Berlin, Germany) 74, 589-607.
Witke, W., Li, W., Kwiatkowski, D.J., and Southwick, F.S. (2001). Comparisons of CapG and gelsolin-null macrophages: demonstration of a unique role for CapG in receptor-mediated ruffling, phagocytosis, and vesicle rocketing. The Journal of cell biology 154, 775-784.
Young, C.L., Southwick, F.S., and Weber, A. (1990). Kinetics of the interaction of a 41-kilodalton macrophage capping protein with actin: promotion of nucleation during prolongation of the lag period. Biochemistry 29, 2232-2240.
Yu, F.X., Johnston, P.A., Sudhof, T.C., and Yin, H.L. (1990). gCap39, a calcium ion- and polyphosphoinositide-regulated actin capping protein. Science (New York, NY 250, 1413-1415.