簡易檢索 / 詳目顯示

研究生: 余明彥
Yu, Ming-Yan
論文名稱: 電動力法處理含銅、鋅廢棄物之研究
Electrokinetic Treatments of Copper/Zinc in Contaminated Soils and Wastes
指導教授: 王鴻博
Wang, H. Paul
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 81
中文關鍵詞: 化學機械平坦化電動力復育螢光粉廢棄物光觸媒
外文關鍵詞: Electrokinetic remediation (EKR), phosphor wastes., photocatalyst, chemical mechanical planarization (CMP)
相關次數: 點閱:152下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   電動力法復育土壤除具現地(in-situ)處理之優點外,對於一般方法難以處理之低水力滲透及細沙質土壤也有相當好的效果。本論文除針對受銅、鉛污染之土壤,也對含銅之化學機械研磨廢水及含鋅的螢光粉等廢棄物以電動力法進行復育或資源回收研究。主要研究內容包括:(1)受污染土壤中添加磷酸(40%)或雙氧水(2%) (H3PO4/H2O2)以促進電動力效率;(2)光催化分解水產生氫離子以提升受重金屬污染土壤之整治效率;(3)化學機械平坦化(chemical mechanical planarization (CMP))廢水中銅離子(濃度高於法定排放標準)以不同孔徑分子篩(MCM-41(40 Å)及Zeolite Y(7.4 Å))之形狀選擇性吸附,在電場作用下有效去除CMP廢水中的銅離子;(4)廢資訊物品回收衍生之螢光粉缺乏有效處理技術,也以高溫熱處理及電動力法將螢光粉中之Zn回收。
      同步輻射光譜顯示磷酸可將土壤中大部份CuCl2及28% CuCO3溶解,以Cu2+為主,經過90分鐘之電動力處理,26%之Cu2+遷移至陰極。土壤中Cu-O-Cu之鍵長約增加0.34 Å,配位數減少1.1;另外磷酸與雙氧水也將土壤中大部份CuCl2及23% CuCO3溶解到液相中,經過90分鐘的電動力反應,91%之Cu2+遷移至陰極,土壤中Cu-O-Cu之鍵長約增加0.68 Å,配位數減少2.5。
      光催化分解水可產生H+以萃取污染土壤中銅離子。0.01 M硝酸,磷酸,草酸,及醋酸可從土壤中萃取出約0.45~3.8 mg/L Cu2+。Zr-Ti-SiO2、奈米TiO2、及Ti-MCM-41等光觸媒經過6小時光催化分解水產生H+,可從土壤中萃取出約0.5~0.7 mg/L Cu2+。另外CMP製程衍生廢水在電場作用下配合分子篩富集銅(48.6 mg/L),6小時後可分別富集約60、70、及75%之銅離子於Zeolite Y、MCM-41、及Al2O3。
      673-1273 K高溫處理螢光粉廢棄物,經過8小時,約30%的鋅被揮發,且約有36%的硫化鋅被氧化成較穩定的氧化鋅。另外也以電動力法之富集螢光粉中之鋅,經90分鐘可使約25% ZnS及4% ZnO溶解成Zn2+於液相中,在電場作用下(5 volts/cm),42% Zn2+遷移且富集於至陰極。

      Electrokinetic remediation (EKR) is a promising method with advantages in in-situ treatments of contaminated soils. EKR may be applicable in low hydraulic permeability and fine granted soils. The main objective of this work was to study the electrokinetic treatments of copper- and lead-contaminated soils, chemical mechanical planarization (CMP) waste water, and phosphor wastes. Experimentally, enhanced dissolution of copper and lead in a contaminated soil under electric field (0-5 volts/cm) in the presence of 40% of H3PO4 and/or 2% of H2O2 was conducted. In addition, H+ generated from photocatalytic degradation of water was used to accelerate the dissolution of copper from soils. Copper in the CMP waste water was effectively trapped in the shape selective molecular sieves (MCM-41 (40 Å) or Zeolite Y (7.4 Å)) under electric field. Selective toxic metals in phosphor wastes during thermal and electrokinetic treatments were also studied in the present work.
      X-ray absorption near edge structural spectra (XANES) showed that most of CuCl2 and about 28% of CuCO3 were dissolved into the aqueous phase as Cu2+ in the presence of H3PO4 (40%). After 90 minutes of EKR, at least 26% of Cu(II) were transported toward the cathode by electric field. In the EKR process, the axial Cu-O-Cu bond distance in the soils was increased by 0.34 Å and coordination numbers were decreased by 1.1, which might be due to the outer-sphere copper was distorted or dissolved into the electrolyte. Similarly, in the presence of H3PO4 (40%) and H2O2 (2%), most of CuCl2 and about 23% of CuCO3 were dissolved into the aqueous phase. During EKR, at least 91% of Cu(II) were transported toward the cathode. The axial Cu-O-Cu bond distance in the soils was increased by 0.68 Å and coordination numbers were decreased by 2.5.
      Extraction of copper from the contaminated soil with acid (HNO3, H3PO4, C2H2O4, or CH3COOH) was compared with H+ generated from photocatalytic degradation of water. About 0.5-0.7 mg/L of Cu(II) were extracted from soils with the H+ yielded from photocatalytic degradation of water on Zr-Ti-SiO2, nano-TiO2, and Ti-MCM-41 photocatalysts for six hours.
      During the thermal treatments for eight hours at 673-1273 K, 36% of ZnS in the phosphor wastes might be oxidized to ZnO in the presence of air. It turns out that electrokinetic might be more effective than the thermal treatments in recovery of Zn from the phosphor wastes by at least 12%.

    CONTENT 中文摘要…………………………………………………………………………I ABSTRACT…………………………………………………………………………II CONTENT…………………………………………………………………………III 致謝………………………………………………………………………………V LIST OF TABLES…………………………………………………………………VI LIST OF FIGURES………………………………………………………………VII CHAPTER 1 INTRODUCTION………………………………………………………1 CHAPTER 2 LITERATURE SURVEY…………………………………………………3 2.1 Sources and Toxicities of Metals in Contaminated Soils…………3 2.2 Remediation Methods ………………………………………………………3 2.3 Electrokinetic Remediation………………………………………………7 2.3.1 Enhanced Remediation Methods…………………………………………7 2.3.2 Modeling of Electrokinetic Remediation……………………………10 2.3.3 Electrodes…………………………………………………………………11 2.4 Shape Selective Molecular Sieves………………………………………12 2.5 Chemical Structures of Select Elements in Environment Solids…13 CHAPTER 3 EXPERIMENTAL METHODS AND APPARATUS……………………………14 3.1 Characterization of Samples………………………………………………14 3.2 In-situ X-ray Absorption Spectroscopy…………………………………19 3.3 Electrokinetic Treatments…………………………………………………21 3.3.1 Photocatalytic Reactions………………………………………………21 3.3.2 Abstraction of Copper in CMP Waste Water with Molecular Sieve during Electrokinetic Treatmen……………………………………………………………23 3.3.3 Electrokinetic and Thermal Treatments of Phosphor Wastes……25 CHAPTER 4 RESULTS AND DISCUSSION………………………………………………26 4.1 Electrokinetic Treatments of Cu- and Pb-Contaminated Soils in the presence of H3PO4 and H2O2…………………………………………………………………………26 4.2 In situ XANES Studies of Copper in a Contaminated Soil under Electric Field ……………………………………………………………………………………………32 4.3 Extraction of Copper from a Contaminated Soil Enhanced by Nano-Cluster TiO2 Photocatalysts…………………………………………………………………………40 4.4 Enhanced Abstraction of Copper from CMP Waste Water into Molecular Sieves ……………………………………………………………………………………………45 4.5 Recovery of Zinc in Phosphor Wastes via Thermal and Electrokinetic Treatments ……………………………………………………………………………………………51 CHAPTER 5 CONCLUSION………………………………………………………………60 REFERENCES………………………………………………………………………………62 APPENDIXES………………………………………………………………………………76 Appendix 1………………………………………………………………………………76 Appendix 2………………………………………………………………………………79

    Acar Y. B. and Alshawabkeh A. N., Electrokinetic Remediation. I. Pilot-scale tests with lead-spiked kaolinite, J. Geotech. Eng. 122, 3 (1994).
    Acar, Y. B. and Alshawabkeh, A. N., Principles of electrokinetic remediation, Environ. Sci. Technol. 27, 2638-2647 (1993).
    Albrecht, K., Environmental protection and semiconductor manufacture - not a marriage of convenience, Semiconductor Fabtech-13th edition, 109-111.
    Aruguete, D. M., Aldstadt, J. H., and Mueller, G. M., Accumulation of several heavy metals and lanthanides in mushrooms (Agaricales) from the Chicago region, Science of the Total Environment 224 (1-3), 43-56 (1998).
    Ascone, I., Longo, A., Dexpert, H., Ciriolo, M. R., Rotilio, G., and Desideri, A., An X-ray absorption study of the reconstitution process of bovine Cu, Zn superoxide dismutase by Cu(I)-glutathione complex, FEBS Letters 322 (2), 165-167 (1993).
    Bae, H. Y. and Choi, G. M., Electrical and reducing gas sensing properties of ZnO and ZnO-CuO thin films fabricated by spin coating method, Sensors and Actuators B 55, 47-54 (1999).
    Baraud, F., Tellier, S., and Astruc, M., Ion velocity in soil solution during electro- kinetic remediation, J. Haz. Mat. 56, 315-332 (1997).
    Barrachina, A. C., DeLaune, R. D., and Jugsujinda, A., Phosphogypsum chemistry under highly anoxic conditions, Waste Management 22, 657-665 (2002).
    Bech, J., Poschenrieder, C., Llugany, M., Barcelo, J., Tume, P., Tobias, F. J., Barranzuela, J. L., and Vasquez, E. R., Arsenic and heavy metal contamination of soil and vegetation around a copper mine in Morthern Peru, The Sci. of the Total Environ. 203, 83-91 (1997).
    Bogan, B. W., Trbovic, V., and Paterek, J. R., Inclusion of vegetable oils in Fenton’s chemistry for remediation of PAH-contaminated soils, Chemosphere 50, 15-21 (2003).
    Bolivar, J. P., Tenorio, R. G., and Leon, M. G., Enhancement of natural radioactivity in soils and salt-marshes surrounding a non-nuclear industrial complex, The Sci. of the Total Environ. 173/174, 125-136 (1995).
    Busta, H. H., Espinosa R. J., Rakhimov, A. T., Suetin, N. V., Timofeyev, M. A., Bressler, P., Schramme, M., Fields, J. R., Kordesch, M. E., and Silzars, A., Performance of nanocrystalline graphite field emitters, Solid-State Electronics 45 (6), 1039-1047 (2001).
    Chauvat, M. and Ponge, J. F., Colonization of heavy metal-polluted soils by collembola: preliminary experiments in compartmented boxes, Applied Soil Ecology 21, 91-106 (2002).
    Chen, S. M., Characterization and electrocatalytic properties of cobalt hexa- cyanoferrate films, Electrochemical Acta. 43, 3359-3369 (1998).
    Chien, Y. C., Wang, H. P., and Yang, Y. W., Mineralization of CCl4 with copper oxide, Environ. Sci. Technol. 35, 3259-3262 (2001).
    Coluccia, S., Marchese, L., and Martra, G., Characterisation of microporous and mesoporous materials by the adsorption of molecular probes: FTIR and UV-Vis studies, Microporous and Mesoporous Materials 30 (1), 43-56 (1999).
    Contin, M., Nobili, M. D., and Brookes, P. C., Comparison of two methods for extraction of ATP from soil, Soil Biol. Biochem., Vol. 27, No. 11, 1371-1376 (1995).
    Darmawan and Wada, S. -I., Effect of clay mineralogy on feasibility of electrokinetic soil decontamination technology, Applied Clay Science 20 (6), 283-293 (2002).
    Dong, D. M., Li, Y., Zhang, B. Y., Hua, X. Y., and Yue, B. H., Selective chemical extraction and separation of Mn, Fe oxides and organic material in natural surface coatings: application to the study of trace metal adsorption mechanism in aquatic environments, Microchemical Journal 69 (1), 89-94 (2001).
    Donisa, C., Mocanu, R., and Steinnes, E., Distribution of some major and minor elements between fulvic and humic acid fractions in natural soils, Geoderma 111 (1-2), 75-84 (2003).
    Duffy, J. E., Anderson, M. A., Hill, C.G., and Zeltner, W. A., Wet peroxide oxidation of sediments contaminated with PCBs, Environ. Sci. Technol. 34, 3199-3204 (2000).
    Eighmy, T. T., Crannell, B. S., Butler, L. G., Cartledge, F. K., Emery, E. F., Oblas, D., Krzanowski, J. E., Eusden, J. D., JR., Shaw, E. L., and Francis, C. A., Heavy metal stabilization in municipal solid waste combustion dry scrubber residue using soluble phosphate, Environ. Sci. Technol. 31, 3330-3338 (1997).
    Ernst, S. and Selle, M., Immobilization and catalytic properties of perfluorinated ruthenium phthalocyanine complexes in MCM-41-type molecular sieves, Microporous and Mesoporous Materials 27 (2-3), 355-363 (1999).
    Eykholt, G. R., Development of pore pressures by nonuniform electroosmosis in clays, J. Haz. Mat. 55, 171-186 (1997).
    Feng, J. Y., Hu, X. J., and Yue, P. L., Degradation of salicylic acid by photo-assisted Fenton reaction using Fe ions on strongly acidic ion exchange resin as catalyst, Chemical Engineering Journal 100 (1-3), 159-165 (2004).
    Feng, X., Fryxell, G. E., Wang, L. Q., Kim, A. Y., Liu, J., and Kemner, K. M., Functionalized monolayers on ordered mesoporous supports, Science 276 (5314), 923-926 (1997).
    Flyhammar, P. and Hakansson, K., The release of heavy metals in stabilized MSW by oxidation, The Sci. of the Total Environ. 243/244, 291-303 (1999).
    Fujishiro, Y., Uchida, S., and Sato, T., Synthesis and photochemical properties of semiconductor pillared layered compounds, International Journal of Inorganic Materials 1 (1), 67-72 (1999).
    Gaoling, Z., Bin, S., Gaorong, H., Kozuka, H., and Yoko, T., Graded bandgap semiconductor thin film photoelectrodes, Chinese Science Bulletin 46 (11), 914-918 (2001).
    Golden, J. H. and Carrubba, J. E., Chemistry of CMP Wastewater, Semiconductor Fabtech-13th edition, 123-126.
    Goswami, D. Y., Vijayaraghavan, S., Lu, S., Tamm, G., New and emerging developments in solar energy, Solar Energy 76, 33-43 (2004).
    Gota, S., Gautier, M., Douillard, L., Thromat, N., Duraud, J. P., and Le Fevre, P., Influence of the substrate oxidation state in the growth of copper clusters on Al2O3(0001) surface: a XANES and EXAFS study, Surface Science 323 (1-2), 163-174 (1995).
    Gunter, M. M., Ressler, T., Jentoft, R. E., and Bems, B., Redox Behavior of Copper Oxide/Zinc Oxide Catalysts in the Steam Reforming of Methanol Studied by in Situ X-Ray Diffraction and Absorption Spectroscopy, Journal of Catalysis 203 (1), 133-149 (2001).
    Hamed, J. T. and Bhadra, A., Influence of current density and pH on electrokinetics, J. Haz. Mat. 55, 279-294 (1997).
    Haran, B. S. et al., Mathematical modeling of hexavalent chromium decontamination from low surface charged soils, Journal of Hazardous Materials 55 (1-3), 93-107 (1997).
    Haran, B. S., Popov, B. N., Zheng, G., and White, R. E., Development of a new electrokinetic technique for decontamination of hexavalent Chromium from low surface charged soils, Environ. Progr. 15, 166-172 (1996).
    Heitzer, A., Applegate, B., Kehrmeyer, S., Pinkart, H., Webb, O. F., Phelps, T. J., White, D. C., and Sayler, G. S., Physiological considerations of environmental applications of lux reporter fusions, Journal of Microbiological Methods 33 (1), 45-57 (1998).
    Hilbrandt, N., Wasserman, S. R., and Martin, M., Ex situ and in situ X-ray absorption spectroscopy: On the kinetics of precipitation formation in (Mg1-xCux)O, Solid State Ionics 101, 431-435 (1997).
    Ho, S. et al., Scale-up aspects of the Lasagna[su TM] process for in situ soil decontamination, Journal of Hazardous Materials 55 (1-3), 39-60 (1997).
    Hsiao, M. C., Wang, H. P., and Wang, Y. W., EXAFS and XANES studies of copper in a solidified fly ash, Environ. Sci. Technol. 35, 2532-2535 (2001).
    Hsiao, M. C., Wang, H. P., Wei, Y. L., Chang, J. E., and Jou, C. J., Speciation of copper in the incineration fly ash of a municipal solid waste, Journal of Hazardous Materials 91 (1-3), 301-307 (2002).
    Huang, Y. J., Wang, H. P., and Lee, J. F., Catalytic reduction of NO on copper/MCM-41 studied by in situ EXAFS and XANES, Chemosphere 50 (8), 1035-1041 (2003).
    Iwasawa, Y., In situ characterization of supported metal catalysts and model surfaces by time-resolved and three-dimensional XAFS techniques, Journal of Catalysis 216 (1-2), 165-177 (2003).
    Jang, Y. C. and Townsend, T. G., Leaching of lead from computer printed wire boards and cathode ray tubes by municipal solid waste landfill leachates, Environmental Science & Technology 37 (20), 4778-4784 (2003).
    Juanga, K. W., Chenb, Y. S., Leeb, D. Y., Using sequential indicator simulation to assess the uncertainty of delineating heavy-metal contaminated soils, Environmental Pollution 127, 229–238 (2004).
    Karandikar, P., Agashe, M., Vijayamohanan, K., and Chandwadkar, A. J., Cu2+-perchlorophthalocyanine immobilized MCM-41: catalyst for oxidation of alkenes, Applied Catalysis A-General 257 (2), 133-143 (2004).
    Kato, H. and Kudo A., Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium, J. Phys. Chem. B 106, 5029-5034 (2002).
    Keeling, A. A., Cater, G. L. F., Toxicity of copper, lead, nickel and zinc in agar culture to aerobic, diazotrophic bacteria extracted from waste-derived compost, Chemosphere 37 (6), 1073-1077 (1998).
    Kharkats, Y. I., Theoretical model of radionuclide extraction from soils by the mechanism of ionic electromigration, Journal of Electroanalytical Chemistry 450, 27-35 (1998).
    Kharkats, Y., Theoretical model of radionuclide extraction from soils by the mechanism of ionic electromigration, Journal of Electroanalytical Chemistry 450 (1), 27-35 (1998).
    Kimura, K. K., Yajima, S., Takase, H., Yokoyama, M., and Sakurai, Y., Sol-gel modification of pH electrode glass membranes for sensing anions and metal ions, Anal. Chem. 73, 1605-1609 (2001).
    Komnitsas, K., Lazar, I., and Petrisor, I. G., Application of a vegetative cover on phosphogypsum, Minerals Engineering 12 (2), 175-185 (1999).
    Kong, S. H., Watts, R. J., and Choi, J. H., Treatment of petroleum-contaminated soils using iron mineral catalyzed hydrogen peroxide, Chemosphere 37 (8), 1473-1482 (1998).
    Ku, C. C., Wang, H. P., Liu, S. H., and Hsiao, M. C., In-situ EXAFS study of arsenic in the electrokinetic remediation of a copper mine tailing, Journal of the Chinese Institute of Environmental Engineering 11 (3), 173-177 (2001).
    Kunito, T., Saeki, K., Nagaoka, K., Oyaizu, H., and Matsumoto, Characterization of copper-resistant bacterial community in rhizosphere of highly copper-contaminated soil, Eur. J. Soil Biol. 37, 95-102 (2001).
    Kwon, C. H., Kim, J. H., Jung, I. S., Shin, H., and Yoon, K. H., Preparation and Chracterization of TiO2-SiO2 nano-composite thin films, Ceramics International 29, 851-856 (2003).
    LaGrega, M. D., Buckingham, P. L., and Evans, J. C., Hazardous Waste Management 2nd, McGRAW-Hill (2001).
    Lai, C. L. and Lin, S. H., Treatment of chemical mechanical polishing wastewater by electrocoagulation: system performances and sludge settling characteristics, Chemosphere 54 (3), 235-242 (2004).
    Laidler, K. J. and Meiser, J. H., Physical Chemistry 3rd, Houghton Mifflin, 285-287 (1999).
    Lee, C. H., Chang, S. L., Wang, K. M., and Wen, L. C., Management of scrap computer recycling in Taiwan, J. Haz. Mat. 73 (3), 209-220 (2000).
    Lewandowska, A., Monteverdi, S., Bettahar, M., and Ziolek, M., MCM-41 mesoporous molecular sieves supported nickel - physico-chemical properties and catalytic activity in hydrogenation of benzene, Journal of Molecular Catalysis A-Chemical 188 (1-2), 85-95 (2002).
    Li, Z., Yu, J. W., and Neretnieks, I., A new approach to electrokinetic remediation of soils polluted by heavy metal, J. Conta. Hydrology 22, 241-253 (1996).
    Li, Z., Yu, J. W., and Neretnieks, I., Removal of Pb(II), Cd(II), and Cr(III) from sand by electromigration, J. Haz. Mat. 55, 295-304 (1997).
    Lin, H. P., Chi, Y. S., Lin, J. N., Mou, C. Y., and Wan, B. Z., Direct synthesis of MCM-41 mesoporous aluminosilicates containing Au nanoparticles in aqueous solution, Chemistry Letters (11), 1116-1117 (2001).
    Lin, H. P., Yang, L. Y., Mou, C. Y., Liu, S. B., and Lee, H. K., A direct surface silyl modification of acid-synthesized mesoporous silica, New Journal of Chemistry 24 (5), 253-255 (2000).
    Lin, Y. P., Teng, T. P., Chang, T. K., Multivariate analysis of soil heavy metal pollution and landscape pattern in Changhua county in Taiwan, Landscape and Urban Planning 62, 19–35 (2002).
    Lin, Y. S., Kumakiri, I., Nair, B. N., and Alsyouri, H., Microporous inorganic membranes, Separation and Purification Methods 31 (2), 229-379 (2002).
    Liu, S. H. and Wang, H. P., Speciation of copper during EDTA-enhanced electrokintic remediation, Langmuir (in press).
    Lu, Y., Ganguli, R., Drewien, C. A., Anderson, M. T., Brinker, C. J., Gong, W., Guo, Y., Soyez, H., Dunn, B., Huang, M. H., and Zink, J. I., Continuous formation of supported cubic and hexagonal mesoporous films by sol-sel dip-coating, Nature 389, 364-368 (1997).
    Lydersen, E. et al., The influence of total organic carbon (TOC) on the relationship between acid neutralizing capacity (ANC) and fish status in Norwegian lakes, Science of the Total Environment 326 (1-3), 63-69 (2004).
    Maeda, M. and Bergstrom, L. F., Leaching patterns of heavy metals and nitrogen evaluated with a modified tanks-in-series model, Journal of Contaminant Hydrology 43 (2), 165-185 (2000).
    Mcgee, K. C., Driessen, M. D., and Grassian, V. H., Infrared study of the adsorption and reaction of methyl chloride and methyl iodide on silica-supported Pt catalysts (vol 159, pg 69, 1996), Journal of Catalysis 162 (1), 151-152 (1996).
    McGinnis, B. D., Adams, V. D., and Middlebrooks, E. J., Degradation of ethylene glycol using Fenton's reagent and UV, Chemosphere 45 (1), 101-108 (2001).
    Mohamed, A. M. O., Remediation of heavy metal contaminated soils via integrated electrochemical process, Waste Management 16, 741-747 (1996).
    Mortimer, R. J., Barbeira, P. J. S., Sene, A. F. B., and Stradiotto, N. R., Potentiometric determination of potassium cations using a nickel (II) hexacyanoferrate-modified electrode, Talanta 49, 271-275 (1999).
    Muller, G., Bodis, J., EderMirth, G., Kornatowski, J., and Lercher, J. A., In situ FT-IR microscopic investigation of metal substituted AlPO4-5 single crystals, Journal of Molecular Structure 410, 173-178 (1997).
    Munoz, J. F., Carvajal, J. R., and Rengifo, P. O., Modelling of the transport of acid and copper in tailings based on the USGS MOC model 47, Mayaguez, Puerto Rico, ASCE, New York, USA., 126-131 (1995).
    Murthy, K. V. V. S. B. S. R., Kulkarni, S. J., and Masthan, S. K., Sorption properties of modified silicoaluminophosphate(SAPO)-5 and SAPO-11 molecular sieves, Microporous and Mesoporous Materials 43 (2), 201-209 (2001).
    On, D. T., Zaidi, S. M. J., and Kaliaguine, S., Stability of mesoporous aluminosilicate MCM-41 under vapor treatment, acidic and basic conditions, Microporous and Mesoporous Materials 22 (1-3), 211-224 (1998).
    Oosthuizen, L., Swart, H., Viljoen, P. E., Holloway, P. H., and Berning, G. L. P., ZnS:Cu,Al,Au phosphor degradation under electron excitation, Applied Surface Science 120 (1-2), 9-14 (1997).
    Pamukcu, S. and Wittle, J. K., Electrokinetic removal of selected heavy metals from soil, Environmental Progress11 (3), 241-250 (1992).
    Park, H. and Choi, W., Photoelectrochemical investigation on electron transfer mediating behaviors of polyoxometalate in UV-illuminated suspensions of TiO2 and Pt/TiO2, J. Phys. Chem. B 107, 3885-3890 (2003).
    Parvulescu, V. and Su, B.-L., Iron, cobalt or nickel substituted MCM-41 molecular sieves for oxidation of hydrocarbons, Catalysis Today 69 (1-4), 315-322 (2001).
    Peng, T., Cheng, Q., and Stevens, R. C., Amperometric detection of Escherichia coli heat-labile enterotoxin by redox diacetylenic vesicles on a sol-gel thin-film electrode, Anal. Chem. 72, 1611-1617 (2000).
    Perez-Pariente, J., Diaz, I., Mohino, F., Satre, E., Appl. Catal. A 254, 173-188 (2003).
    Peters, R. W., Chelant extraction of heavy metals from contaminated soils, J. Haz. Mat. 66 (1-2), 151-210 (1999).
    Probstein, R. F. and Hicks, R. E., Removal of contaminants from soils by electric fields, Science. 260, 498-503 (1993).
    Rababah, A. and Matsuzawa, S., Treatment system for solid matrix contaminated with fluoranthene. II - Recirculating photodegradation technique, Chemosphere 46 (1), 49-57 (2002).
    Reddy, K. R. and Chinthamreddy, S., Electrokinetic remediation of heavy metal- contaminated soils under reducing environments, Waste Management 19, 269-282 (1999).
    Reimers, J. R., Lu, T. X., Crossley, M. J., and Hush, N. S., Molecular electronic properties of fused rigid porphyrin-oligomer molecular wires, Chemical Physics Letters 256, 353-359 (1996).
    Ribeiro, A. B. and Mexia, J. T., Dynamic model for the electrokinetic removal of copper from a polluted soil, Journal of Hazardous Materials 56 (3), 257-271 (1997).
    Rockne, K. J., Taghon, G. L., and Kosson, D. S., Pore structure of soot deposits from several combustion source, Chemosphere 41, 1125-1135 (2000).
    Rukah, Y. A. and Aljarayesh, I. A., Thermodynamic assessment in heavy metal migration at EI-Akader landfill sites, North Jordan, Waste Management 22, 727-738 (2002).
    Salam, A. K. and Helmke, P. A., The pH dependence of free ionic activities and total dissolved concentrations of copper and cadmium in soil solution, Geoderma 83 (3-4), 281-291 (1998).
    Sawada, A., Tanaka, S., Fukushima, M., and Tatsumi, K., Electrokinetic remediation of clayey soils containing copper(II)-oxinate using humic acid as a surfactant, Journal of Hazardous Materials 96 (2-3), 145-154 (2003).
    Sayama, K., and Arakawa, H., Significant effect of carbonate addition on stoichiometric photodecomposition of liquid water into hydrogen and oxygen from platinum titanium (IV) oxide suspension, J. Chem. Soc., Chem. Commun., 150-152 (1992).
    Schacht, S., Janicke, M., and Schuth, F., Modeling X-ray patterns and TEM images of MCM-41, Microporous and Mesoporous Materials 22 (1-3), 485-493 (1998).
    Schalley, C. A., Wesendrup, R., Schroder, D., and Schwarz, H., Gas-phase chemistry of hydrogen peroxide and alkyl hydroperoxides with “Bare” first-row transition-metal cations Cr+-Co+. Generation of MO+ cations using H2O2 as oxidant, Organometallics 15, 678-683 (1996).
    Scheckel, K. G. and Ryan, J. A., In vitro formation of pyromorphite via reaction of Pb sources with soft-drink phosphoric acid, The Sci. of the Total Environ. 302, 253-265 (2003).
    Schultz, D. S., Electroosmosis technology for soil remediation: laboratory results, field trial, and economic modeling, J. Haz. Mat. 55, 81-91 (1997).
    Schultz, E., Joutti, A., Raisanen, M. L., Lintinen, P., Martikainen, E., and Lehto, O., Extractability of metals and ecotoxicity of soils from two old wood impregnation sites in Finland, Science of the Total Environment 326 (1-3), 71-84 (2004).
    Schwartz, D. T., Buehler, M. F., Christiansen, D. X., and Davis, E. J., In-situ monitoring of electrochemical transport processes in Hanford Grout Vault Soil, J. Haz. Mat. 55, 23-37 (1997).
    Sen, T. K., Mahajan, S. P., and Khilaa, K. C., Adsorption of Cu2+ and Ni2+ on iron oxide and kaolin and its importance on Ni2+ transport in porous media, Colloids and Surfaces A: Physicochem. Eng. Aspects 211, 91-102 (2002).
    Sene, J. J., Zeltner, W. A., and Anderson, M. A., Fundamental photoelectrocatalytic and electrophoretic mobility studies of TiO2 and V-doped TiO2 thin-film electrode materials, J. Phys. Chem. B 107, 1597-1603 (2003).
    Shapiro, A. P. and Probstein, R. F., Removal of contaminants from saturated clay by electroosmosis, Environ. Sci. Technol. 27, 283-291 (1993).
    Shapiro, A. P., Renaud, P. C., and Probstein, R. F., Preliminary studies on the removal of chemical species from saturated porous media by electroosmosis, Physico- chemical Hydrodynamics 11, 785-802 (1989).
    Sharma, N. S., Shaju, K. M., Subba Rao, G. V., and Chowdari, B. V. R., Sol-gel derived nano-crystalline CaSnO3 as high capacity anode material for Li-ion batteries, Electrochemistry Communications 4, 947-952 (2002).
    Shen, C. M., Zhang, X. G., Zhou, Y. K., and Li, H. L., Preparation and characterization of nanocrystalline Li4Ti5O12 by sol-gel method, Materials Chemistry and Physics 78, 437-441 (2002).
    Shiba, S., Hino, S., Hirata, Y., and Seno, T., Removal of heavy metal from soil and groundwater by in-situ electrokinetic remediation, Water Science and Technology 42 (7-8), 335-343 (2000).
    Shinichi, I., Photoelectrocatalytic production of hydrogen from natural seawater under sunlight, Int. Hydrogen Energy 22 (7), 675-678 (1997).
    Smith, L. A., Means, J. L., Chen, A., Alleman, B., Chapaman, C.C., Tixier Jr., J. S., Brauning, S. E., Gavaskar, A. R., and Royer, M D., Remedial Options for Metals contaminated Sites. CRC Press.
    Soldo, Y., Sibert, E., Tourillon, G., Hazemann, J. L., Levy, J. P., Aberdam, D., Faure R., and Durand, R., In situ X-ray absorption spectroscopy study of copper under potential deposition on Pt(111): role of the anions on the Cu structural arrangement, Electrochimica Acta 47 (19), 3081-3091 (2002).
    Spiller, W., Wohrle, D., SchulzEkloff, G., Ford, W. T., Schneider, G., and Stark, J., Photo-oxidation of sodium sulfide by sulfonated phthalocyanines in oxygen- saturated aqueous solutions containing detergents or latexes, Journal of Photochemistry and Photobiology A-Chemistry 95 (2), 161-173 (1996).
    Sporn, D., GroBmann, J., Kaiser, A., Jahn, R., and Berger, A., Sol-gel processing of nanostructured ceramic and ceramic/metal composite materials, NanoStructured Materials 6, 329-332 (1995).
    Spurgeon, D.J., Hopkin, S.P., Jones, D.T., Effects of cadmium, copper, lead and zinc on growth, reproduction and survival of the earthworm Eisenia fetida (Savigny): Assessing the environmental impact of point-source metal contamination in terrestrial ecosystems, Environ. Pollut. 84, 123-130 (1994).
    Stroppolo, M. E. et al., On the coordination and oxidation states of the active-site copper ion in prokaryotic Cu,Zn superoxide dismutases, Biochemical and Biophysical Research Communications 249 (3), 579-582 (1998).
    Sun, C. C. and Chou, T. C., Kinetics and mechanism of photoelectrochemical oxidation of nitrite ion by using the rutile form of a TiO2/Ti photoelectrode with high electric field enhancement, Ind. Eng. Chem. Res. 37, 4207-4214 (1998).
    Svegl, I. G., Kolar, M., Ogoreve B., and Pihlar, B., Vermiculite clay mineral as an effective carbon paste electrode modifier for the preconcentration and voltammetric determination of Hg(II) and Ag(I) ions, Fresenius J. Anal. Chem. 361, 358-362 (1998).
    Swart, H. C. and Greeff, A. P., Degradation effect of a ZnO layer on ZnS: comparison between a Monte Carlo simulation and experimental Auger and CL measurements, Surface and Interface Analysis 32 (1), 84-87 (2001).
    Swart, H. C. and Hillie, K. T., Degradation of ZnS FED phosphors, Surface and Interface Analysis 30, 383-386 (2000).
    Swart, H. C., Hillie, K. T., and Greeff, A. P., Effect of temperature on the degradation of ZnS FED phosphors, Surface and Interface Analysis 32 (1), 110-113 (2001).
    Tokunaga, S. and Hakuta, T., Acid washing and stabilization of an artificial arsenic- contaminated soil, Chemosphere 46 (1), 31-38 (2002).
    Tselepis, A., Doulias, P. T., Lourida, E., Glantzounis, G., Tsimoyiannis, E., and Galaris, D., Trimetazidine protects low-density lipoproteins from oxidation and cultured cells exposed to H2O2 from DNA damage, Free Radical Biology & Medicine 30 (12), 1357-1364 (2001).
    U.S. EPA. Test method for evaluating solid waste, SW-846, method 3050, Vol. 1A-1C, Laboratory Manual, Physical Chemical Methods (1986).
    Vane, L. M. and Zang, G. M., Effect of aqueous phase properties on clay particle zeta potential and electro-osmotic permeability: Implications for electro-kinetic soil remediation process, J. Haz. Mat. 55, 1-22 (1997).
    Vanmaekelbergh, D. and Jongh, P. E., Driving force for electron transport in porous nanostructured photoelectrodes, J. Phys. Chem. B103 (5), 747-750 (1999).
    Vassilev, S. V. and Vassileva, C. G., Geochemistry of coals, coal ashes and combustion wastes from coal-fired power stations, Fuel Processing Technology 51, 19-45 (1997).
    Velizarova, E., Ribeiro, A. B., and Ottosen, L. M., A comparative study on Cu, Cr, and As removal from CCA-treated wood waste by dialytic and electrodialytic processes, J. Haz. Mat. B94, 147-160 (2002).
    Virkutyte, J., Sillanpaa, M., and Latostenmaa, P., Electrokinetic soil remediation -critical overview, Sci. Total Environ. 289, 97-121 (2002).
    Wang, C. H., Lin, Y. H., and Hsieh, Y. H., Electrokinetic remediation of trichloroethylene contaminatedc kaolinite, Journal of the Chinese Institute of Environmental Engineering 10 (4), 279-289 (2000).
    Wang, M. J., Land application of sewage sludge in China, The Sci. of the Total Environ. 197, 149-160 (1997).
    Wang, Z., Huang, X., and Chen, L., Performance improvement of surface-modified LiCoO2 cathode materials, Journal of The Electrochemical Society 150 (2), 199-208 (2003).
    Watts, R. J. and Stanton, P. C., Mineralization of sorbed and NAPL-phase hexadecane by catalyzed hydrogen peroxide, Wat. Res. 33 (6), 1405-1414 (1999).
    Watts, R. J., Stanton, P. C., Howsawkeng, J., and Teel, A. L., Mineralization of a sorbed polycyclic aromatic hydrocarbon in two soils using catalyzed hydrogen peroxide, Water Research 36, 4283-4292 (2002).
    Wong, J. S. H., Hicks, R. E., and Probstein, R. F., EDTA-enhanced electroremediation of metal-contaminated soils, J. Haz. Mat. 55, 61-79 (1997).
    Wu, N. L., Wang, S. Y., and Rusakova, A., Inhibition of crystallite growth in the sol-gel synthesis of nanocrystalline metal oxides, Science 285, 1375-1377 (1999).
    Wu, R. C. and Papadopoulos, K. D., Electroosmotic flow through porous media: cylindrical and annular models, Colloids and Surfaces A: Physicochemical and Engineering Aspects 16, 469-476 (2000).
    Yanez, L. et al., Overview of human health and chemical mixtures: Problems facing developing countries, Environmental Health Perspectives 110, 901-909 (2002).
    Yang, G. C. C., Yang, T. Y., and Tsai, S. H., Crossflow electro-microfiltration of oxide-CMP wastewater, Water Research 37 (4), 785-792 (2003).
    Yang, P., Deng, T., Zhao, D., Feng, P., Pine, D., Chmelka, B. F., Whitesides, G. M., and Stucky, G. D., Hierarchically ordered oxides, Science 282, 2244-2246 (1998).
    Yao, J. L., Tang, J., Wu, D. Y., Sun, D. M., Xue, K. H., Ren, B., Mao, B. W., and Tian, Z. Q., Surface enhanced Raman scattering from transition metal nano-wire array and the theoretical consideration, Surface Science 514, 108-116 (2002).
    Yeung, A. T., Hsu, C., and Menon, R. M., EDTA-enhanced electrokintic extraction of lead, J. Geotechnical Engineering, 666-673 (1996).
    Yeung, A. T., Hsu, C., and Menon, R. M., Physicochemical soil-contaminant interactions during electrokinetic extraction, J. Haz. Mat. 55, 221-237 (1997).
    Yong, R. N., Mohamed, A. M. O., and Warkentin, B. P., Principles of contaminant transport in soils. Elsevier Pub. Inc., Amsterdam (1992).
    Zarur, A. J. and Ying, J. Y., Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustuin, Nature 403, 65-67 (2000).
    Zhang, L., Papaefthymiou, G. C., Ziolo, R. F, and Ying, J. Y., Novel γ-Fe2O3/SiO2 magnetic nanocomposites via sol-gel matrix-mediated synthesis, NanoStructured Materials 9, 185-188 (1997).
    Zhang, X. and Chan, K. Y., Water-in-oil microemulsion synthesis of platinum- ruthenium nanoparticles, their characterization and electrocatalytic properties, Chem. Mater. 25, 451-459 (2003).
    Zhou, C., Kong, J., Yenilmez, E., and Dai, H., Modulated chemical doping of individual carbon nanotubes, Science 290, 1552-1555 (2000).

    下載圖示 校內:2005-08-13公開
    校外:2005-08-13公開
    QR CODE