簡易檢索 / 詳目顯示

研究生: 李孟軒
Lee, Meng-hsuan
論文名稱: 利用電噴灑製備聚乳酸-聚甘醇酸共聚合物微膠囊與纖維絲於微流體晶片之研究
Study of Poly(lactide-co-glycolides) Microcapsule and Microfiber Generation on Microfluidic Chip by Using Electrospray
指導教授: 林裕城
Lin, Yu-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 89
中文關鍵詞: 微流道晶片粒徑均一電噴灑聚乳酸-聚甘醇酸共聚合物
外文關鍵詞: microfludic chip, uniform particle size, electrospray, Poly(lactide-co-glycolides(PLGA)
相關次數: 點閱:123下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在藥物使用的範疇中,如果想要使藥品能夠完全的發揮出療效,藥物的控制與釋放一向是研究的重點,而藥物載體的粒徑大小與藥物釋放之效果息息相關,隨著微機電製程技術的進步,藥物載體的粒徑大小越做越小,過去縮小粒徑的方式不外乎改變管道幾何形狀、縮小管道尺寸與改變流體特性,而能製備出最小粒徑大約為20 m。本研究將過去被用於質譜儀分析之電噴灑現象,運用在製備聚乳酸-聚甘醇酸共聚合物(Poly(lactide-co-glycolides), PLGA)藥物載體,並改變連續相乳化劑之濃度,使PLGA藥物載體粒徑縮小至5 m以下。本研究利用微機電製程與灌注成形法製作聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)微流道晶片,利用管道之幾何形狀造成鞘流現象,使製備之PLGA乳化球粒徑均一,同樣藉由微機電製程技術在ITO玻璃基板上製作所需之電極晶片,並與微流道晶片接合,目的為提供電場於微流道之鞘流區,使鞘流現象與電噴灑現象結合,達到晶片實驗室之目的,操控連續相乳化劑之濃度與施加之電壓,製備之藥物載體粒徑範圍從最大70 m到最小2 m,並在添加乳化劑Span 80濃度3% (w/w)施加電壓5000 V時製備出PLGA纖維絲,纖維絲直徑從最大18 m到最小7 m,此尺寸之改良對於藥物載體之療效與纖維絲之應用將更為廣泛。

    Controlling and releasing drugs play an important role to display curative effects in the drug utilization category. There is strong correlation between drug carrier size controlled and drug-released. Nowadays, the size of drug carrier become more and more small by improving Micro Electro Mechanical Systems (MEMS) technology, which used different geometry shape channel, shrunk channel size or changed flow capability, and only could get particles which minimum sizes are around 20 m.
    The aim in this study is using electrospray of mass spectrometry analysis to fabricate submicron size Poly (lactide-co-glycolides) (PLGA) drug carriers by controlling different concentration of continual phase emulsifier.
    This study uses MEMS process and casting molding to manual Polydimethylsiloxane (PDMS) microchannel chips and fabricates uniform size PLGA emulsion particles by flow focusing, which is made by designing geometry shape microfludic chips. In addition, this study uses MEMS technology to fabricate electrodes on ITO glass substrates and combine with mircofludic chip for applying electric field in flow focusing area. Combining flow focusing phenomenon and electrospray phenomenon could control different concentration continual phase emulsifier and apply voltage, so that PLGA drug carriers, which are less than 2 m, and PLGA fibers ,which are thinnest 7 m, could be fabricated. These actions will promote effects of drug carriers; furthermore, drug carriers could be used extensively.

    摘要 I ABSTRACT II 目錄 IV 圖目錄 VII 符號表 X 第一章 緒論 1 1-1  藥物控制與釋放的重要性 3 1-2  羥基乙酸共聚合高分子 6 1-2-1 羥基乙酸共聚合物之優點 8 1-3  微流體晶片的發展與應用 10 1-3-1 微機電系統技術與微流體晶片 10 1-3-2 微流體晶片之製程技術 12 1-3-3 電噴灑製備藥物載體之技術 17 1-4  研究動機與目的 20 1-5  研究架構 21 第二章 微流體晶片之設計與製作 22 2-1  光罩設計與母模製作 22 2-1-1 光罩設計 22 2-1-2 母模製作 25 2-2  PDMS灌注成形技術及翻製流程 33 2-2-1 晶片接合與組裝技術 37 第三章 實驗與研究方法 40 3-1  實驗儀器與設備 40 3-1-1 倒立式螢光光學顯微鏡 40 3-1-2 微量注射幫浦 41 3-1-3 真空抽氣系統 42 3-1-4 表面粗度儀 43 3-1-5 TM-1000 桌上型顯微鏡 44 3-2  實驗藥品 46 3-3  實驗方法 48 3-3-1 W/O乳化球實驗與電噴灑現象 48 第四章 結果與討論 54 4-1  微流體晶片 54 4-2  利用電噴灑生成W/O乳化球 55 4-2-1 操控電壓、流量與乳化劑濃度探討W/O乳化球之粒徑 57 4-2-2 DI water纖維絲之探討 62 4-3  利用電噴灑生成PLGA乳化球 64 4-3-1 操控電壓、流量與乳化劑濃度探討PLGA乳化球之粒徑 65 4-3-2 乳化劑濃度對於產物形式之影響 72 4-3-3 PLGA纖維絲之探討 78 第五章 結論與建議 82 5-1  結論 82 5-2  建議 84 參考文獻 85

    [1] L. G. Griffith, “Polymeric biomaterials,” Acta Materialia, 48, pp. 263, 2000.
    [2] L. Brannon-Peppas, “Polymers in controlled drug delivery,” Medical Plastics and Biomaterials, 4, pp. 34, 1997.
    [3] R. Langer, “Drug delivery and targeting,” Nature, 392, pp. 5, 1998.
    [4] S. Karlsson, “Weight losses and molecular weight changes correlated with the evolution of hydroxyacids in simulated in vivo degradation of homo and copolymers of PLA and PGA,” Polymer Degradation and Stability, 52, pp. 283-291, 1996.
    [5] K. Seiler, D. J. Harrison and A. Manz, “Planar Chips Technology for Miniaturization and Integration of Separation Techniques into Monition Systems,” Journal of Chromatography, 593, pp. 253-258, 1992.
    [6] Y. N. Xia and G. M. Whitesides, “Soft lithography,” Angewandte Chemie-International Edition, 37, pp. 551-575, 1998.

    [7] L. Martynova, L.E. Locascio, M. Gaitan, G.W. Kramer, R.G. Christensen, and W.A. MacCrehan, “Fabrication of plastic microfluid channels by imprinting methods,” Analytical Chemistry, 69, pp. 4783-4789, 1997.
    [8] H. Becker and U. Heim, “Polymer hot embossing with silicon master structures,” Sensors and Materials, 11, pp. 297-304, 1999.
    [9] M. Heckele, W. Bacher, and K.D. Muller, “Hot embossing - The molding technique for plastic microstructures,” Microsystem Technologies, 4, pp. 122-124, 1998.
    [10] H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sensors and Actuators a-Physical, 83, pp. 130-135, 2000.
    [11] D. Snakenborg, H. Klank and J. P. Kutter, “Microstructure fabrication with a CO2 laser system,” Journal of Micromechanics and Microengineering, 14, pp. 182-189, 2004.
    [12] K. S. Huang, T. H. Lai and Y. C. Lin, “Manipulating the Generation of Ca-alginate Microspheres using Microfluidic Channels as a Carrier of Gold Nanoparticles,” Lab on a Chip, 6, pp. 954-957, 2006.

    [13] K. S. Huang, T. H. Lai, Y. C. Lin, “Using a Microfluidic Chip and Internal Gelation Reaction for Monodisperse Calcium Alginate Microparticles Generation,” Frontiers in Bioscience, 12, pp. 3061-3067, 2006.
    [14] R. M. McCormick, R. J. Nelson, M. G. AlonsoAmigo, J. Benvegnu, and H.H. Hooper, “Microchannel electrophoretic separations of DNA in injection-molded plastic substrates,” Analytical Chemistry, 69, pp. 2626-2630, 1997.
    [15] D. A. Drew and R. T. Lahey, “Phase-distribution mechanisms in turbulent low-quality 2-phase flow in a circular pipe,” Journal of Fluid Mechanics, 117, pp. 91-106, 1982.
    [16] S. L. Anna, N. Bontoux and H. A. Stone, “Formation of dispersions using "flow focusing" in microchannels,” Applied Physics Letters, 82, pp. 364-366, 2003.
    [17] W. Li, E. W. K. Young, M. Seo, Z. Nie, P. Garstecki, C. A. Simmons and E. Kumacheva, “Simultaneous generation of droplets with different dimensions in parallel integrated microfluidic droplet generators,” Soft Matte, 4, pp. 258-262, 2008.

    [18] I. Kobayashi, S. Mukataka and M. Nakajima, “Novel asymmetric through-hole array microfabricated on a silicon plate for formulating monodisperse emulsions,” Langmuir, 21, pp. 7629-7632, 2005.
    [19] K. Liu, H. J. Ding, J. Liu, Y. Chen and X. Z. Zhao, “Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device,” Langmuir, 22, pp. 9453-9457, 2006.
    [20] H. Zhang, E. Tumarkin, R. Peerani, Z. Nie, R.M.A. Sullan, G.C. Walker and E. Kumacheva, “Microfluidic production of biopolymer microcapsules with controlled morphology,” Journal of the American Chemical Society, 128, pp. 12205-12210, 2006.
    [21] I. Hayati, A. I. Bailey, Th. F. Tadros, “Mechanism of stable jet formation in electrohydrodynamic atomization,” Nature, 319, pp. 2, 1986.
    [22] J. Xie, C. Wang, “Electrospray in the dripping mode for cell microencapsulation,” Journal of Colloid and Interface Science, 312, pp. 27-255, 2007.
    [23] J. Xie, W. J. Ng, L. Y. Lee, C. Wang, “Encapsulation of protein drugs in biodegradable microparticles by co-axial electrospray,” Journal of Colloid and Interface Science, 317, pp.469-476, 2008.
    [24] Y. Lee, F. Mei, M. Bai, S. Zhao, Da. Chen, “Release profile characteristics of biodegradable-polymer-coated drug particles fabricated by dual-capillary electrospray,” Journal of Controlled Release, 145, pp.58-65, 2010.
    [25] H. Andersson, C. Jönsson, C. Moberg and G. Stemme,” Consecutive microcontact printing-ligands for asymmetric catalysis in silicon channels,” Sensors and Actuators B, 79, pp. 78-84, 2001.
    [26] M. J. Owen and P. J. Smith, “Plasma treatment of polydimethylsiloxane,” Journal of Adhesion Science and Technology, 8, pp. 1063, 1994.
    [27] J. H. Xu, S. W. Li, C. Tostado, W. J. Lan, G. S. Luo, “Preparation of monodispersed chitosan microspheres and in situ encapsulation of BSA in a co-axial microfluidic device,” Biomedical Microdevices, 11, pp. 243-249, 2009.
    [28] A. L. Yarin, S. Koombhongse, D. H. Reneker, “Taylor cone and jetting from liquid droplets in electrospinning of nanofibers,” Journal of applied physics, 90, pp. 4836-4846, 2001.

    下載圖示 校內:2016-05-13公開
    校外:2016-05-13公開
    QR CODE