簡易檢索 / 詳目顯示

研究生: 吳奕慶
Wu, Yi-Ching
論文名稱: 高靈敏度自我補償交叉耦合之射頻獵能器
A High Sensitivity Threshold-Compensated Complementary CMOS RF Energy Harvester
指導教授: 鄭光偉
Cheng, Kuang-Wei
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 65
中文關鍵詞: 射頻獵能低輸入功率自我補償交叉耦合天線與整流器共同設計
外文關鍵詞: RF energy harvesting, low input power, self-compensation, complementary diode, co-design with antenna and rectifier
相關次數: 點閱:103下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個新形態應用於ISM Band 之915 MHz的射頻獵能器,利用自我補償臨限電壓和交叉耦合技術,同時改善了在低輸入功率下電晶體臨限電壓過高和自我補償後漏電流太大的問題,達到了高靈敏度的目標。此外本論文也使用天線與整流器共同設計的技術以減少傳統需加入的阻抗匹配電路,進而提升整體獵能的功率轉換效率。
    論文前半段介紹目前獵能電路的發展應用以及整體獵能電路上的設計考量,在比較完目前較先進的獵能架構後,第三章提出了本論文的設計架構及設計方法;第四章則為量測考量和結果。本論文共有兩種無線量測介紹,分別為:一般50 Ω阻抗匹配並使用市售天線的量測;以及天線與整流器共同設計阻抗匹配的無線量測。最後在無線量測結果在 -20 dBm 輸入功率下可提供開路負載1.2 V 之輸出電壓;天線與整流器共同設計之功率轉換效率在 -23 dBm低輸入功率及0.33M歐姆負載下為 40 %,對比一般50 Ω匹配版本有明顯地改善,最大轉換效率約提高了50 %; 無線量測距離為4.5公尺在射頻訊號產生器輸出為0.1 W、操作頻率為915 MHz 情況下,1 MΩ的負載下可充電至1.2 V電壓輸出。晶片面積為0.62 × 0.68 mm2、包括天線之印刷電路板面積為151 × 47 mm2。

    This thesis presents a novel RF energy harvester for ISM band of 915 MHz applications. This structure uses a combination of the self-compensating of threshold voltage and the complementary technique to solve the problem of CMOS high threshold voltage at low input power level of harvester and high leakage current in overcompensation. Moreover, the antenna co-design rectifier is used to decrease power loss of the impedance matching network in traditional harvester, and it leads to an improvement of power conversion efficiency.
    Chapter 1 and chapter 2 introduce the development of energy harvester application and the design consideration of the RF energy harvester system. The state-of-the-art CMOS RF energy harvesters are introduced and compared. The implementation of this work and design method are presented in chapter 3. Chapter 4 shows the testing setups and measurement results. There are two wireless measurements in this thesis. The first one is normal 50 Ω impedance matching with commercially available antennas, and the second one is the co-design impedance matching with antenna and rectifier. Measurement results show that the harvester system has 1.2 V output voltage at an input power of -20 dBm. The power conversion efficiency of co-design version is 40 % at low input power level -23 dBm, which is obviously improved about 50 % in 50 Ω matching version. The wireless transfer range of 1.2 V output voltage at 1 MΩ is 4.5 meters from a 0.1 W RF source at operating frequency of 915 MHz. The chip area is 0.62 × 0.68 mm2 and the area of all PCB (Printed Circuit Board) while included the antenna is 151 × 47 mm2.

    Contents Chapter 1 Introduction 1 Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Application of RF Energy Harvesting 2 1.3 Research Goal 5 1.4 Thesis Organization 5 Chapter 2 Fundamentals of RF Energy Harvesting System 6 2.1 Introduction of RF Energy Harvesting System 6 2.2 Performance Metrics of RF Energy Harvester 7 2.2.1 Sensitivity 7 2.2.2 Power Conversion Efficiency 7 2.2.3 Required Input Voltage of Rectifier 7 2.2.4 Regulator Dropout Voltage 8 2.2.5 Load Voltage and Load Current 8 2.2.6 Overall System Efficiency 8 2.3 Analysis of RF Rectifier 10 2.3.1 Operation Principle of RF Rectifier 10 2.3.2 The Impedance Matching Network 10 2.3.3 Passive LC Voltage Boosting Effect and Quality Factor 11 2.3.4 Input Impedance of Different Charge Regions 12 2.4 Review of RF Rectifier Architecture 15 2.4.1 Self-Compensated Rectifier 15 2.4.2 Complementary CMOS Rectifier 16 2.4.3 Quasi-Floating Gate Biasing Rectifier 17 2.5 Power Management for RF Energy Harvesting System 18 2.5.1 Low Dropout Regulator 18 2.5.2 Reference Voltage Circuit 19 Chapter 3 The Implementation of RF Energy Harvester 20 3.1 Self-Compensated Complementary Rectifier Technique 20 3.1.1 Current Analysis 22 3.1.2 Compensated Voltage Effect 23 3.1.3 Output Stage of SCC Rectifier 24 3.2 Analysis of Design Parameters 26 3.2.1 Input Impedance of SCC Rectifier 26 3.2.2 N-Stage Rectifier 27 3.2.3 Transistor Size 28 3.3 Simulation Results of RF Rectifier 29 3.4 Power Management Unit 32 3.4.1 Bandgap Reference Voltage Circuit 32 3.4.2 The Implementation of Low Dropout Regulator 35 3.5 Layout and Floor Plan 39 Chapter 4 Test Setup and Measurement Results 40 4.1 Wire-Test 40 4.1.1 Wire-Test Setup 40 4.1.2 Measurement of Wire-Test 43 4.1.3 Measurement of LOD 47 4.2 Wireless-Test 50 4.2.1 Wireless-Test Setup 50 4.2.2 Measurement of Wireless-Test 50 4.3 Antenna and Rectifier Co-Design 52 4.3.1 Antenna Design and Measurement Setup 52 4.3.2 Measurement of Co-Design Rectenna 56 Chapter 5 Conclusion and Future Works 60 5.1 Conclusion 60 5.2 Future Works 60 Bibliography 62

    [1] T. Soyata and L. Copeland, “RF Energy Harvesting for Embedded Systems : A Survey of Tradeoffs and Methodology,” IEEE Circuits and Systems Mag, vol. 16, no. 1, pp. 22–57, Feb. 2016.
    [2] C. R. Valenta and G. D. Durgin, “Harvesting wireless power: Survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems,” IEEE Microwave Mag, vol. 15, no. 4, pp. 108–120, Jun. 2014.
    [3] X. Lu, P. Wang, D. Niyato, D. I. Kim, and Z. Han, “Wireless Networks with RF Energy Harvesting: A Contemporary Survey,” IEEE Commun. Surv. Tutorials, vol. 17, no. 2, pp. 757–789, Nov. 2014.
    [4] G. Papotto, F. Carrara, G. Palmisano, and S. Member, “A 90-nm CMOS Threshold-Compensated RF Energy Harvester,” IEEE J. Solid-State Circuits, vol. 46, no. 9, pp. 1985–1997, Sep. 2011.
    [5] M. Stoopman, S. Member, and S. Keyrouz, “Co-Design of a CMOS Recti fi er and Small Loop Antenna for Highly Sensitive RF Energy Harvesters,” IEEE J. Solid-State Circuits, vol. 49, no. 3, pp. 622–634, Mar. 2014.
    [6] J. Kang, P. Chiang, and A. Natarajan, “A 3.6cm2 Wirelessly-Powered UWB SoC with -30.7dBm Rectifier Sensitivity and Sub-10cm Range Resolution,” in Proc. IEEE Radio Frequency Integrated Circuits Symp. (RFIC), Phoenix, AZ, May 17-19, 2015, pp. 255-258.
    [7] T. Le, K. Mayaram, and T. Fiez, “Efficient far-field radio frequency energy harvesting for passively powered sensor networks,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1287–1302, May. 2008.
    [8] M. Hassanalieragh et al., “Health Monitoring and Management Using Internet-of-Things (IoT) Sensing with Cloud-Based Processing: Opportunities and Challenges,” in IEEE International Conference on Services Computing, New York, NY, 2015, pp. 285-292.
    [9] T. Arampatzis, J. Lygeros, and S. Manesis, “A Survey of Applications of Wireless Sensors and Wireless Sensor Networks,” in Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005., Limassol, Jun. 27-29, 2005, pp. 719-724.
    [10] R. Jurdak, A. G. Ruzzelli, and G. M. P. O’Hare, “Multi-hop RFID wake-up radio: Design, evaluation and energy tradeoffs,” in Proceedings of 17th International Conference on Computer Communications and Networks, St. Thomas, US Virgin Islands, Aug. 3-7, 2008, pp. 1-8.
    [11] “ITU-R Radio Regulations.” [Online]. Available: http://www.itu.int/zh/ITU-R.
    [12] C.A.Balanis, Antenna Theory, 2nd ed. Hoboken, NJ, USA: Wiley, 1982.
    [13] R. E. Barnett, J. Liu, and S. Lazar, “A RF to DC voltage conversion model for multi-stage rectifiers in UHF RFID transponders,” IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 354–370, 2009.
    [14] J.-P. Curty, N. Joehl, F. Krummenacher, C. Dehollain, and M. J. Declercq, “A Model for u-Power Rectifier Analysis and Design,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 52, no. 12, pp. 2771–2779, Dec. 2005.
    [15] J. F. Dickson, “On-Chip High-Voltage Generation in MNOS Integrated Circuits Using an Improved Voltage Multiplier Technique,” IEEE J. Solid-State Circuits, vol. 11, no. 3, pp. 374–378, Jun. 1976.
    [16] V. Pillai, “Impedance Matching in RFID Tags: to Which Impedance to Match?,” in IEEE Antennas and Propagation Society International Symposium, Albuquerque, NM, Jul. 9-14, 2006, pp. 3505-3508.
    [17] N. Soltani and F. Yuan, “A step-up transformer impedance transformation technique for efficient power harvesting of passive transponders,” Microelectronics J., vol. 41, no. 2–3, pp. 75–84, 2010.
    [18] S. Pellerano, J. Alvarado, and Y. Palaskas, “A mm-wave power-harvesting RFID tag in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 8, pp. 1627–1637, Aug. 2010.
    [19] P. Zhao, “Energy Harvesting Techniques for Autonomous WSNs / RFID with a Focus on RF Energy Harvesting,” Elektrotechnik und Informationstechnik der Technischen Universit¨at Darmstadt, 2012.
    [20] A. Sasaki, K. Kotani, and T. Ito, “Differential-drive CMOS rectifier for UHF RFIDs with 66% PCE at -12 dBm input,” in IEEE Asian Solid-State Circuits Conference, Fukuoka, Nov. 3-5, 2008, pp. 105-108.
    [21] A. Facen and A. Boni, “Power Supply Generation in CMOS Passive UHF RFID Tags,” in Ph.D. Research in Microelectronics and Electronics, Otranto, Jun. 12-15, 2006, pp. 33-36.
    [22] K. Kotani and T. Ito, “High efficiency CMOS rectifier circuit with self-Vth-cancellation and power regulation functions for UHF RFIDs,” in IEEE Asian Solid-State Circuits Conference, Jeju, Noc. 12-14, 2007, pp. 119-122.
    [23] G. A. Rincon-Mora and P. E. Allen, “Study and Design of Low Drop-Out Regulators,” IEEE J. Solid-State Circuits, vol. 33, no.1, Jan. 1998.
    [24] E. Vittoz and J. Fellrath, “CMOS analog integrated circuits based on weak inversion operations,” IEEE J. Solid-State Circuits, vol. 12, no. 3, pp. 224–231, Jun. 1977.
    [25] H. Goncalves, J. Fernandes, and M. Martins, “A study on MOSFET rectifiers maximum output voltage for RF power harvesting circuits,” in IEEE International Symposium on Circuits and Systems (ISCAS2013), Beijing, May 19-23, 2013, pp. 2964-2967.
    [26] J. Yi, W. H. Ki, and C. Y. Tsui, “Analysis and design strategy of UHF micro-power CMOS rectifiers for micro-sensor and RFID applications,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 54, no. 1, pp. 153–166, Jan. 2007.
    [27] K. Kotani, A. Sasaki, and T. Ito, “High-efficiency differential-drive CMOS rectifier for UHF RFIDs,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3011–3018, Nov. 2009.
    [28] K. Ueno, S. Member, T. Hirose, and T. Asai, “A 300 nW, 15 ppm/ C, 20 ppm/V CMOS Voltage Reference Circuit Consisting of Subthreshold MOSFETs,” IEEE J. Solid-State Circuits, vol. 44, no. 7, pp. 2047–2054, Jul. 2009.
    [29] J. Torres et al., “Low drop-out voltage regulators: Capacitor-less architecture comparison,” IEEE Circuits and Systems Mag, vol. 14, no. 2, pp. 6–26, May. 2014.
    [30] Mini-Circuits, “RF Transformer TCM2-33WX+,” 2012. [Online]. Available: https://www.minicircuits.com/pdfs/TCM2-33WX+.pdf.
    [31] H. J. Visser, Approximate Antenna Analysis for CAD. John Wiley and Sons, UK, 2009.
    [32] W. Henderson, “On the accuracy of the transmission line model of the folded dipole,” IEEE Trans. Antennas Propag., vol. 28, no. 5, pp. 700–703, Sep. 1980.
    [33] S. Keyrouz, “Practical rectennas : far-field RF power harvesting and transport,” Ph.D. dissertation, Dept. Elect. Eng., TU Eindhoven Univ., Eindhoven, Nederland 2014.
    [34] P. Kamalinejad, K. Keikhosravy, S. Mirabbasi, and V. C. M. Leung, “A CMOS rectifier with an extended high-efficiency region of operation,” in IEEE International Conference on RFID-Technologies and Applications (RFID-TA), Johor Bahru, Sep. 4-5, 2013, pp. 1-6.
    [35] P. Kamalinejad, K. Keikhosravy, M. Magno, S. Mirabbasi, V. C. M. Leung, and L. Benini, “A high-sensitivity fully passive wake-up radio front-end for wireless sensor nodes,” in IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, Jan. 10-13, 2014, pp. 209-210.
    [36] J. Kang, P. Y. Chiang, and A. Natarajan, “A 1.2 cm2 2.4GHz Self-Oscillating Rectifier- Antenna Achieving -34.5dBm Sensitivity for Wirelessly Powered Sensors,” in IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, Feb. 2016, pp. 374-375.
    [37] J. K. Huang and S. Y. Chen, "A compact slot loop rectenna for dual-band operation at 2.4- and 5.8-GHz bands," in IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, 2016, pp. 411-412.
    [38] H. J. Visser and R. J. M. Vullers, "Design equations for small loop-based rectennas," in Loughborough Antennas & Propagation Conference, Loughborough, Nov. 14-15, 2011, pp. 1-4.

    下載圖示 校內:2022-01-03公開
    校外:2022-01-03公開
    QR CODE