| 研究生: |
簡琬庭 Chien, Wan-Ting |
|---|---|
| 論文名稱: |
氧化石墨烯量子點摻雜之三維蛋白質交聯微結構的研製 R&D of Three-Dimensional Graphene Oxide Quantum Dot-Doped Protein Crosslinking Microstructures |
| 指導教授: |
陳顯禎
Chen, Shean-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 44 |
| 中文關鍵詞: | 飛秒雷射 、光微影製程 、雙光子交聯 、三維微結構 、氧化石墨烯量子點 |
| 外文關鍵詞: | femtosecond laser, photolithography, two-photon crosslinking, three-dimensional microstructures, graphene oxide quantum dot |
| 相關次數: | 點閱:138 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要利用超快雷射加工系統之非線性多光子激發來進行三維(three-dimensional,3D)光微影製程(photolithography),經由調控飛秒雷射加工功率和掃描速率,製作具氧化石墨烯(graphene oxide quantum dot,GOQD)的蛋白質3D微結構。主要機制為利用光活化劑(photoactivator)對雙光子吸收(two-photon absorption,TPA),進而誘發蛋白質間雙光子交聯(two-photon crosslinking,TPC)反應,其中孟加拉玫瑰素(rose Bengal,RB)作為光活化劑。首先我們使用明膠為基材,其可為細胞外基質(extracellular matrix,ECM)材料。TPA後可產生高活性的單態氧(singlet oxygen),其單態氧會活化蛋白質上的官能基,蛋白質間形成共價鍵鍵結。進一步為了防止在製作3D微結構過程中加工溶液中GOQDs因RB造成聚集,我們添加牛血清蛋白(bovine serum albumin,BSA)作為分散劑以防止聚集結晶產生,使其溶液中的GOQDs得以長時間穩定地均勻分散於水溶液中。另外,為了避免在TPC過程中誘發嚴重的熱損傷及產生大量的氣泡,而造成所製作出的微結構遭到破壞,因此選擇RB最大TPA之激發波長以降低雷射強度,並以較快的掃描速率進行重複的書寫,避免大量的熱累積於結構中。最後,成功地製作出上述蛋白質與GOQD之複合微結構,並透過雙光子激發螢光(two-photon excited fluorescence,TPEF)顯微鏡與掃描式電子顯微鏡(scanning electron microscope,SEM)來檢視3D結構的表面型貌。
In this study, three dimensional (3D) graphene oxide quantum dot (GOQD)-doped protein microstructures were successful fabrication via 3D photolithography that adopted nonlinear multiphoton excitation of an ultrafast laser machining system by adjusting the power and scan rate of the femtosecond laser. The main mechanism of the multiphoton-induced fabrication is use rose Bengal (RB) as the photoactivator that was activation by two-photon absorption (TPA) of laser energy to start up the two-photon crosslinking (TPC) of protein. First, gelatin as an extracellular matrix (ECM) material was adopted as a base material in TPC. After TPA of RB, an activated RB was generated singlet oxygen to activate proteins that transformed into free radicals and crosslinked with proteins by the covalent bonding. In addition, in order to prevent the aggregation of GOQDs that was resulted from canceling the electric charge by RB during the fabricating 3D TPC microstructure, bovine serum albumin (BSA) as a dispersant was added into the fabrication solution to provide a long term dispersive stability of GOQDs in fabrication solution. Furthermore, excitation wavelength of the TPC fabrication was chosen for achieving superior TPA of RB to reduce the laser power, and was adopted the fabrication method of higher scan rate with repeated writing to prevent the photothermal damage during the TPC processing. Finally, we had successfully fabricated 3D GOQD-doped protein microstructures and also examined surface profiles of 3D GOQD-doped protein microstructures from the two-photon excited fluorescence imaging and scanning electron microscopy.
[1] S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412, 697–698 (2001).
[2] P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
[3] M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, “Femtosecond two-photon stereo-lithography,” Appl. Phys. A: Mater. Sci. Process. 73, 561–566 (2001).
[4] T. Tanaka, H. B. Sun, and S. Kawata, “Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system,” Appl. Phys. Lett. 80, 312–314 (2002).
[5] C. R. Lambert, I. E. Kochevar, and R. W. Redmond, “Differential reactivity of upper triplet states produces wavelength-dependent two-photon photosensitization using Rose Bengal,” J. Phys. Chem. B 103, 3737–3741 (1999).
[6] P. J. Campagnola, D. M. Delguidice, G. A. Epling, K. D. Hoffacker, A. R. Howell, J. D. Pitts, and S. L. Goodman, “3-dimensional submicron polymerization of acrylamide by multiphoton excitation of xanthene dyes,” Macromolecules 33, 1511–1513 (2000).
[7] J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, “Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release,” Macromolecules 33, 1514–1523 (2000).
[8] T. Watanabe, M. Akiyama, K. Totani, S. M. Kuebler, F. Stellacci, W. Wenseleers, K. Braun, S. R. Marder, and J. W. Perry, “Photoresponsive hydrogel microstructure fabricated by two-photon initiated Polymerization,” Adv. Funct. Mater. 12, 611-614 (2002).
[9] Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Nakanishi, M. Duan, and S. Kawata, “Multicolor polymer nanocomposites: in situ synthesis and fabrication of 3D microstructures,” Adv. Mater. 20, 914-919 (2008).
[10] P. W. Wu, W. C. Cheng, I. B. Martini, B. Dunn, B. J. Schwartz, and E. Yablonovitch, “Two-photon photographic production of three-dimensional metallic structures within a dielectric matrix,” Adv. Mater. 12, 1438-1441 (2000).
[11] Y. Y. Cao, N. Takeyasu, T. Tanaka, X. M. Duan, and S. Kawata, “3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction,” Small 5, 1144-1148 (2009).
[12] N. Takeshima, Y. Narita, T. Nagata, and S. Tanaka, “Fabrication of photonic crystals in ZnS-doped glass,” Opt. Lett. 30, 537-539 (2005).
[13] G. Brumfiel, “Graphene gets ready for the big time,” Nature 458, 390-391 (2009).
[14] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438, 197–200 (2005).
[15] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Materials 6, 183–191 (2007).
[16] C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science 18, 385–388 (2008).
[17] J. Qian, D. Wang, F.-H. Cai, W. Xi, L. Peng, Z.-F. Zhu, H. He, M.-L. Hu, and S. He, “Observation of multiphoton-induced fluorescence from graphene oxide nanoparticles and applications in in vivo functional bioimaging,” Angew. Chem. Int. Ed. 51, 10570–10575 (2012).
[18] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457, 706–710 (2009).
[19] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nature Nanotechnology, 574–578 (2010).
[20] S. Y. Park, J. Park, S. H. Sim, M. G. Sung, K. S. Kim, B. H. Hong, and S. Hong “Enhanced differentiation of human neural stem cells into neurons on graphene,” Adv. Mater. 23, H263–H267 (2011).
[21] A. Ovsianikov, A. Deiwick, S. V. Vlierberghe, M. Pflaum, M. Wilhelmi, P. Dubruel, and B. Chichkov “Laser fabrication of 3D gelatin scaffolds for the generation of bioartificial tissues,” Materials 4, 288–299 (2011).
[22] M. Lorenzoni, F. Brandi, S. Dante, A. Giugni, and B. Torre “Simple and effective graphene laser processing for neuron patterning application,” Nature Scientific Reports, Vol. 3, id. 1954 (2013).
[23] Y. Zhou, Q. Bao, L. A. L. Tang, B. Varghese, C. K. Tan, C.-H. Sow, and K. P. Loh, “Microstructuring of graphene oxide nanosheets using direct laser writing,” Adv. Mater. 22, 67–71 (2010).
[24] L. Guo, H.-B. Jiang, R.-Q. Shao, Y.-L. Zhang, S.-Y. Xie, J.-N. Wang, X.-B. Lia, F. Jiang, Q.-D. Chen, T. Zhang, and H.-B. Sun, “Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device,” Carbon 50, 1667–1673 (2012).
[25] K. S. Novoselov, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004).
[26] F. Schwierz, “Graphene transistors,” Nat. Nanotechnol. 5, 487–496 (2010).
[27] B. M. Gillette, J. A. Jensen, B. Tang, G. J. Yang, A. Bazargan-Lari, M. Zhong, and S. K. Sia, “In situ collagen assembly for integrating microfabricated three-dimensional cell-seeded matrices,” Nat. Mater. 7, 636–640 (2008).
[28] G. R. Souza, J. R. Molina, R. M. Raphael, M. G. Ozawa, D. J. Stark, C. S. Levin, L. F. Bronk, J. S. Ananta, J. Mandelin, M.-M. Georgescu, J. A. Bankson, J. G. Gelovani, T. C. Killian, W. Arap, and R. Pasqualini, “Three-dimensional tissue culture based on magnetic cell levitation,” Nat. Nanotechnol. 5, 291–296 (2010).
[29] Y. Chang, S.-T. Yanga, J.-H. Liu, E. Dong, Y. Wang, A. Cao, Y. Liu, and H. Wang “In vitro toxicity evaluation of graphene oxide on A549 cells,” Toxicology Letters 200, 201–210 (2011).
[30] S. R. Shin, B. Aghaei-Ghareh-Bolagh, T. T. Dang, S. N. Topkaya, X. Gao, S. Y. Yang, S. M. Jung, J. H. Oh, M. R. Dokmeci, X. Tang, and A. Khademhosseini, “Cell-laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide,” Adv. Mater. 25, 6385–6391 (2013).
[31] W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80, 1339–1339 (1958).
[32] R. Fricke, P. D. Zentis, L. T. Rajappa, B. Hofmann, M. Banzet, A. Offenhäusser, and S. H. Meffert, “Axon guidance of rat cortical neurons by microcontact printed gradients,” Biomaterials 32, 2070–2076 (2011).
[33] J. Park, S. Kim, J. Li, and A. Han “Multi-compartment neuron–glia co-culture platform for localized CNS axon–glia interaction study,” Lab Chip. 12, 3296–3304 (2012).
[34] M. Lorenzoni, F. Brandi, S. Dante, A. Giugni, and B. Torre “Simple and effective graphene laser processing for neuron patterning application,” Nature Scientific Reports 3, 1954 (2013).
[35] A. I. V. D. Bulcke, B. Bogdanov, N. D. Rooze, E. H. Schacht, M. Cornelissen, and H. Berghmans, “Structural and rheological properties of methacrylamide modified gelatin hydrogels,” Biomacromolecules 1, 31–38 (2000).
[36] J. W. Nichol, S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar, and A. Khademhosseini, “Cell-laden microengineered gelatin methacrylate hydrogels,” Biomaterials 31, 5536–5544 (2010).
[37] T.-F. Yeh, C.-Y. Teng, S.-J. Chen, and H. Teng, “Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination,” Adv. Mater., 26, 3297–3303 (2014).
[38] C. Wan, M. Frydrycha, and B. Chen, “Strong and bioactive gelatin–graphene oxide nanocomposites,” Soft Matter 7, 6159–6166 (2011).
[39] Y. Ge, J. Wang, Z. Shi, and J. Yina “Gelatin-assisted fabrication of water-dispersible graphene and its inorganic analogues,” J. Mater. Chem. 22, 17619–17624 (2012).
[40] Y. Piao and B. Chen “Self-assembled graphene oxide–gelatin nanocomposite hydrogels: characterization, formation mechanisms, and pH-sensitive drug release behavior,” Polymer Phys. 53, 356–367 (2015).
[41] S. Ahadian, M. Estili, V. J. Surya, J. R.-Azcon, X. Liang, H. Shiku, M. Ramalingam, T. Matsue, Y. Sakka, H. Bae, K. Nakajima, Y. Kawazoe, and A. Khademhosseini, “Facile and green production of aqueous graphene dispersions for biomedical applications,” Nanoscale7, 6436–6443 (2015).
[42] S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon 45, 1558–1565 (2007).
[43] J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, “Submicron multiphoton free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release,” Macromolecules 33, 1514–1523 (2000).
[44] P. J. Campagnola, D. M. Delguidice, G. A. Epling, K. D. Hoffacker, A. R. Howell, J. D. Pitts, and S. L. Goodman, “3-dimensional submicron polymerization of acrylamide by multiphoton excitation of xanthene dyes,” Macromolecules 33, 1511–1513 (2000).
[45] D. X. Wang, D. M. Guo, Z. Y. Jia, and H. W. Leng, “Slicing of CAD models in color STL format,” Computers in Industry 57, 3-10 (2006).
[46] C.-Y. Lin, K.-M. Hsu, H.-Y. Chang, H.-C. Huang, T.-F. Yeh, H. Teng and S.-J. Chen, “Multiphoton fabrication of freeform polymer microstructures containing graphene oxide and reduced graphene oxide nanosheets,” Optical Materials Express 5, 218-226 (2015).
[47] F. Kim, L.J. Cote and J. Huang, “Graphene oxide: surface activity and two-dimensional assembly,” Adv. Mater. 22, 1954–1958 (2010).
校內:2021-07-01公開