| 研究生: |
邱連湘 Chiu, Lien-Hsiang |
|---|---|
| 論文名稱: |
利用微地動訊號探討台南台地西緣之地下構造變化 Exploring subsurface structural changes at western edge of the Tainan Tableland using microtremor observations |
| 指導教授: |
饒瑞鈞
Rau, Ruey-Juin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系碩士在職專班 Department of Earth Sciences (on the job class) |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 微地動 、台南台地 、淺層速度構造 |
| 外文關鍵詞: | microtremor, Tainan Tableland, shallow velocity structure |
| 相關次數: | 點閱:123 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台南台地位於台南市區,為一東陡西緩的橢圓形台地。目前台地的形成機制仍存在許多爭議,而過往的文獻主要偏重於台地東緣,有關台地西緣的研究相對較少。為瞭解台地西緣之地下構造,本研究沿台地西側由北至南架設了4條東西向的微地動觀測測線(長1500~3000公尺不等),其中,最北端的測線位於永康區並橫跨鹽水溪,最南端則位於南區省躬國小附近。每條測線以至少8個微地動測量點組成,測站密度為約每250公尺一個站。單站頻譜比法的分析結果顯示,橫跨台地西緣測線A、B及C之共振主頻(介於1.1~1.7 Hz)的變化不大,而同一測線中,放大倍率的變化較為明顯,由台地邊緣西側向東側逐漸增加(由1.2改變至3.7),且在地形高程5至15公尺的區域間,放大倍率變化最明顯。為進一步探討在此台地西緣的變化原因,本研究利用OpenHVSR反演測線的淺層速度構造,反演結果顯示位於台地上的測站其深度300公尺處,S波速度由500 m/s迅速增加到1000 m/s,該劇烈變化顯示此處可能為沖積層與基岩的交界面,此深度介面可對應至深鑽結果之上部古亭坑層位置(375公尺);另根據跨越台地的三條測線A、B及C反演所得之二維速度構造剖面顯示,上部古亭坑層與台南層的介面深度從台地西側平原的地下800公尺深,往東500至600公尺距離內快速抬升至地下300公尺深,並在台南台地上趨於平緩,此一傾斜地層變化結果與Le Béon 等人(2019)提出的台南地表淺層構造趨勢相符。由此可知沖積層與基岩的地層介面S波速度劇烈變化及地表地層厚度的快速變化是導致台地邊緣處所觀察到之放大倍率變化的主要原因。
Tainan Tableland is an oval-shaped tableland located in Tainan city. It is characterized by steep terrain on the eastern edge and gentle slope on the western edge. The mechanism of its formation is still under debate. Previous studies were mainly focus on the eastern edge of Tainan Tableland, nevertheless, the research of the western tableland is few. To understand the structure of subsurface of the western tableland, we employed four east-west microtremor survey lines from north to south. The length of survey lines ranged from 1500 to 3000 meters. The northernmost survey line located across YongKang District and Yanshui River, while the southernmost line was nearby the Shenggong Elementary school in the South District. Each survey line was composed of at least eight microtremor measurements with a density of 250 meters per site. The HVSR results showed that the resonant frequency peak of the survey lines A, B, and C concentrated on the frequencies ranged from 1.1 Hz to 1.7 Hz. However, for the same survey lines, the amplifications of HVSR were various. The amplitudes smoothly increasing from 1.2 to 3.7 from west to east. It showed the most significant change on elevation ranged from 5 meters to 15 meters. To understand the reason behind the variations, we utilized OpenHVSR to invert velocity structures of shallow surface. The result of the inversion showed the speed of the S wave reached 1000 m/s at depth 300 meters. This depth corresponds to the upper Gutingkeng Formation (375m) according to the borehole result. Our research showed the depth of the interface between upper Gutingkeng Formation and Tainan Formation is 800 meters on the western edge of the tableland, moreover, it rapidly steepen toward the eastern side with the profile of 300 meters in depth, and comes to a subdued relief on Tainan Tableland. This result is agree with previous studies. Therefore, the changes of amplification is related to the rapid variation of the S-wave velocity between the subsurface layer and the basement rock formation.
中文部分
王乾盈(1999)。嘉南地區活動斷層與震源特性研究-(子計畫四)嘉南地區活斷層震測調查及叢集地震活動分佈分析(I)。行政院國家科學委員會專題研究計畫成果報告。
台南市政府都市發展局(2014年12月5日)。台南市防災型都市更新計畫階段性成果簡報,台南市,台灣。
何春蓀(1986)。臺灣地質概論:臺灣地質圖說明書。經濟部中央地質調查所。
李錫堤(2003)。九十二年度台灣地震地質研究-台灣西南部之台南層暨其新構造運動與古地震研究(I)。行政院國家科學委員會專題研究計畫成果報告。
吳東錦(1990)。台南台地台南層之碳十四定年研究及其在新構造運動上之意義。國立臺灣大學地質研究所碩士論文。
吳樂群,陳華玟、顏一勤(2011)。朴子、佳里、台南[臺灣地質圖幅及說明書1/50,000]。經濟部中央地質調查所。
林朝棨(1957)。台灣地形。臺灣省文獻委員會。
林朝棨(1971)。臺南地方的第四紀地質-臺南平原重砂探勘報告。經濟部聯合礦業研究所報告,112,30-65。
林啟文、盧詩丁、石同生、劉彥求、林偉雄、林燕慧(2007)。後甲里斷層。經濟部中央地質調查所特刊,17,109-124。
周瑞燉(1971)。臺灣南部臺南區泥岩層之地層沈積之初步研究。台灣石油地質,8,187-219。
徐亮明(1984)。臺灣嘉南平原更新世地層及其所含水溶性天然氣。台灣石油地質,20,199-213。
張錫齡(1962)。臺灣嘉義縣中崙CL-1探井及高雄縣滴水崁TK-1探井之地下地質。台灣石油地質,1,51-65。
張瑞津、石再添和陳翰霖(1996)。台灣西南部台南海岸平原地形變遷之研究。師大地理研究報告,26,19-56。
許茂雄(1999)。建築結構系統。成功大學建築文教基金會。
陳文山、李錫堤、陳于高(2003)。槽溝開挖與古地震研究計畫(2/5)-四、後甲里斷層的古地震研究。經濟部中央地質調查所「地震地質調查與活動斷層資料庫建置計畫」研究報告。
陳松春、景國恩、羅祐宗、陸挽中(2020)。 台南背斜及中洲背斜之泥貫入體特徵、活動性及地質安全。經濟部中央地質調查所彙刊,33,1-32。
郭俊翔、林哲民、章順強、溫國樑、謝宏灝(2017)。臺灣強震測站場址資料庫。國家地震工程研究中心(編號:NCREE-17-004)。
賴典章、費立沅、陳文政、侯進雄、黃智昭、陳瑞娥、陳利貞、賴慈華、呂學諭、陸挽中、周素卿、陳志楷、邱淑雯、王元才、王菁穗、陳文和(2001)。嘉南平原及蘭陽平原水文地質調查八十八年下半年及八十九年度工作報告。經濟部中央地質調查所,台灣地區地下水觀測網第二期計畫。
謝世雄(1972)。臺灣西南部濱海平原台南及中洲兩構造之地下地質與重力異常之研究。台灣石油地質,10,323-338。
鍾振東(1968)。臺灣南部臺南地區麓山帶地層與地質構造之區域性研究。台灣石油地質,6,15-31。
陳松春、景國恩、羅祐宗、陸挽中(2020)。 台南背斜及中洲背斜之泥貫入體特徵、活動性及地質安全。經濟部中央地質調查所彙刊,33,1-32。
英文部分
Allen, R. V. (1978). Automatic earthquake recognition and timing from single traces. Bulletin of the Seismological Society of America, 68(5), 1521-1532.
Arai, H., and K. Tokimatsu (2004). S-wave velocity profiling by inversion of microtremor H/V spectrum. Bulletin of the Seismological Society of America, 94 (1), 53-63.
Baer, M., and U. Kradolfer (1987). An automatic phase picker for local and teleseismic events. Bulletin of the Seismological Society of America, 77(4), 1437-1445.
Bignardi, S., A. Mantovani, and N. Abu Zeid (2016). OpenHVSR: imaging the subsurface 2D/3D elastic properties through multiple HVSR modeling and inversion. Computers & Geosciences, 93, 103-113. doi: 10.1016/j.cageo.2016.05.009
Biq, C. C., L. S. Chang, P. Y. Chen, C. S. Ho, T. L. Hsu, W. P. Keng, T. H. Lee, C. W. Pan, L. P. Tan, S. F. Tsan, and Y. T. Yang (1957). Lexique stratigraphique international: volume 3, Asie, fascicule 4, Taiwan (Formose). Centre National de la Recherche Scientifique.
Bonnefoy-Claudet, S., S. Baize, L. F. Bonilla, C. Berge-Thierry, C. R. Pasten, J. Campos, P. Volant, and R. Verdugo (2009). Site effect evaluation in the basin of Santiago de Chile using ambient noise measurements. Geophysical Journal International, 176(3), 925-937. doi:10.1111/j.1365-246X. 2008.04020.x
Bonnefoy-Claudet, S., P. Y. Bard, and F. Cotton (2006). The nature of noise wavefield and its applications for site effects studies. A literature review. Earth-Science Reviews, 79(3-4), 205-227. doi: 10.1016/j.earscirev.2006.07.004
Building Seismic Safety Council (BSSC) (2003). NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures. Federal Emergency Management Agency.
Burjanek, J., J. R. Moore, F. X. Yugsi Molina, and D. Fäh (2012). Instrumental evidence of normal mode rock slope vibration. Geophysical Journal International, 188, 559-569.
Chang, J. C. and H. L. Chen (2001). Geomorphological Changes on Coastal Plain in Southwestern Taiwan. Western Pacific Earth Sciences, 1(1), 107-114.
Chatelain, J. L., B. Guiller, F. Cara, A. Duval, K. Atakan, P. Y. Bard, and The WP02 SESAME TEAM (2008). Evaluation of the influence of experimental conditions on H/V results from ambient noise recordings. Bulletin Earthquake Engineering, 6(1), 33-74.
Chou, Y. T., C. F. Wu, and R. J. Rau (2022). Characterization of shallow velocity structure using single-station and array microtremors in Tainan City, Taiwan. (manuscript will be submitted to Engineering Geology).
D’Amico V., M. Picozzi, F. Baliva, and D. Albarello (2008). Ambient Noise Measurements for Preliminary Site-Effects Characterization in the Urban Area of Florence, Italy. Bulletin of the Seismological Society of America, 98(3), 1373-1388.
Delgado, J., C. Lopez Casado, A. C. Estevez, J. Giner, A. Cuenca and S. Molina (2000). Mapping soft soils in the Segura river valley (SE Spain): a case study of microtremors as an exploration tool. Journal of Applied Geophysics, 45(1), 19-32.
Del Gaudio, V., S. Muscillo, and J. Wasowski (2014). What we can learn about slope response to earthquakes from ambient noise analysis: An overview. Engineering Geology, 182, 182-200.
Fäcke, A., S. Parolai, S. M. Richwalski, and L. Stempniewski (2006). Assessing the Vibrational Frequencies of the Cathedral of Cologne (Germany) by Means of Ambient Seismic Noise Analysis. Natural Hazards, 38, 229-236.
Gallipoli, M. R., M. Mucciarelli, R. R. Castro, G. Monachesi, and P. Contri (2004). Structure, soil-structure response and effects of damage based on observations of horizontal-to-vertical spectral ratios of microtremors. Soil Dynamics and Earthquake Engineering, 24, 487-495.
García-Jerez, A., F. Luzón, F. J. Sánchez-Sesma, E. Lunedei, D. Albarello, M. A. Santoyo, and J. Almendros (2013). Diffuse elastic wavefield within a simple crustal model: Some consequences for low and high frequencies. Journal of Geophysical Research: Solid Earth, 118, 5577-5595. doi:10.1002/2013JB010107
García-Jerez A., J. Piña-Flores, F. J. Sánchez-Sesma, F. Luzón, and M. Perton (2016). A computer code for forward computation and inversion of the H/V spectral ratio under the diffuse field assumption. Computers & Geosciences, 97, 67-78.
Gischig, V. S., E. Eberhardt, J. R. Moore, and O. Hungr (2015). On the seismic response of deep-seated rock slope instabilities—insights from numerical modelling. Engineering Geology, 193, 1-18.
Haskell, N. A. (1960). Crust reflection of plane SH waves. Journal of Geophysical Research, 65, 4147-4150.
Herak, M. (2008) ModelHVSR - a Matlab® tool to model horizontal-to-vertical spectral ratio of ambient noise. Computers & Geosciences, 34(11), 1514-1526.
Huang, S. T., K. M. Yang, J. H. Hung, J. C. Wu, H. H. Ting, W. W. Mei, S. H. Hsu, and M. Lee (2004). Deformation front development at the northeast margin of the Tainan basin, Tainan-Kaohsiung area, Taiwan. Marine Geophysical Research, 25(1), 139-156. doi: 10.1007/s11001-005-0739-z
Kawase, H., F. J. Sánchez-Sesma, and S. Matsushima (2011). The optimal use of horizontal-to-vertical spectral ratios of earthquake motions for velocity inversions based on diffuse-field theory for plane waves. Bulletin of the Seismological Society of America, 101(5), 2001-2014.
Kuo, C. H., K. L. Wen, C. M. Lin, S. Wen, and J. Y. Huang (2015). Investigating Near Surface S-wave Velocity Properties Using Ambient Noise in Southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 26(2), 205-211.
Le Béon, M., O. Marc, J. Suppe, M. H. Huang, S. T. Huang, and W. S. Chen (2019). Structure and deformation history of the rapidly growing Tainan anticline at the deformation front of the Taiwan mountain belt. Tectonics, 38(9), 3311-3334. doi: 10.1029/2019tc005510
Lermo, J. and F. J. Chávez-García (1993). Site effect evaluation using spectral ratios with only one station. Bulletin of the Seismological Society of America, 83, 1574-1594.
Lenti, L., and S. Martino (2012). The interaction of seismic waves with step-like slopes and its influence on landslide movements. Engineering Geology, 126, 19-36.
Lovati, S., M. K. H. Bakavoli, M. Massa, G. Ferretti, F. Pacor, R. Paolucci, E. Haghshenas, and M. Kamalian (2011). Estimation of topographical effects at Narni ridge (Central Italy): comparisons between experimental results and numerical modeling, Bulletin of Earthquake Engineering, 9, 1987-2005.
Lunedei, E., and D. Albarello (2010). Theoretical HVSR curves from full wavefield modelling of ambient vibrations in a weakly dissipative layered Earth. Geophysical Journal International, 181, 1093-1108. doi:10.1111/j.1365246X. 2010.04560.x
Lunedei, E., and P. Malischewsky (2015). A review and some new issues on the theory of the H/V technique for ambient vibrations. Perspectives on European Earthquake Engineering and Seismology, 2, 371-394.
Maresca, R., L. Nardone, F. T. Gizzi, and M. R. Potenza (2018). Ambient noise HVSR measurements in the Avellino historical centre and surrounding area (southern Italy). Correlation with surface geology and damage caused by the 1980 Irpinia-Basilicata earthquake. Measurement, 130, 211-222.
Baer, M., and U. Kradolfer (1987). An automatic phase picker for local and teleseismic events. Bulletin of the Seismological Society of America, 77(4), 1437-1445.
Molnar, S., J. F. Cassidy, S. Castellar, C. Cornou, H. Crow, J. A. Hunter, S. Matsushima, F. J. Sánchez-Sesma, and A. Yong (2018). Application of microtremor horizontal-to-vertical spectral ratio (MHVSR) analysis for site characterization: State of the art. Surveys in Geophysics, 39, 613-631.
Mucciarelli, M., M. Gallipoli, D. Di Giacomo, F. Di Nota, and E. Nino (2005). The influence of wind on measurements of seismic noise. Geophysical Journal International, 161, 303-308.
Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports, 30(1), 25-33.
Nakamura, Y. (2000). Clear identification of fundamental idea of Nakamura’s technique and its applications. Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand.
Panzera, F., G. Lombardo, S. D’Amico, and P. Galea (2013). Speedy techniques to evaluate seismic site effects in particular geomorphologic conditions: faults, cavities, landslides and topographic irregularities. Engineering Seismology, Geotechnical and Structural Earthquake Engineering, 1, 101-145.
Parolai, S., P. Bormann, and C. Milkereit (2002). New relationships between VS, thickness of sediments, and resonance frequency calculated by the H/V ratio of seismic noise for the Cologna area (Germany). Bulletin of the Seismological Society of America, 92 (6), 2521-2527.
SESAME (Site EffectS assessment using AMbient Excitations) (2004) Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations. SESAME European Research Project WP12.
Shani-Kadmiel, S., M. Tsesarsky, J. N. Louie, and Z. Gvirtzman (2012). Simulation of seismic-wave propagation through geometrically complex basins: The Dead Sea basin. Bulletin of the Seismological Society of America, 102(4), 1729-1739.
Stanko, D., and S. Markušić (2020). An empirical relationship between resonance frequency, bedrock depth and VS30 for Croatia based on HVSR forward modelling. Natural Hazards, 103(3), 3715-3743.
Stevenson, P. R. (1976). Microearthquakes at Flathead Lake, Montana: A study using automatic earthquake processing. Bulletin of the Seismological Society of America, 66(1), 61-80.
Wang, Z., R. Street, E. Woolery, and J. Harris (1994). QS estimation for unconsolidated sediments using first-arrival SH wave critical refractions. Journal of Geophysical Research: Solid Earth, 99, 13543-13551.
Yu, J. and J. Haines (2003). The choice of reference sites for seismic ground amplification analyses: Case study at Parkway, New Zealand. Bulletin of the Seismological Society of America, 93(2), 713-723. doi:10.1785/0120010289