| 研究生: |
劉薺心 Liu, Chi-Hsin |
|---|---|
| 論文名稱: |
以多目標規劃達成高鐵時間無縫轉乘-以利害關係人為核心 Achieving Time Seamless Transfer of High Speed Rail Using Multi-Objective Programming: A Stakeholder-Centric Approach |
| 指導教授: |
林珮珺
Lin, Pei-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 接駁系統 、轉乘時間 、時刻表 、利害關係人 、順序式線性目標規劃方法 |
| 外文關鍵詞: | Transfer Systems, Transfer Time, Timetable, Stakeholders, Sequential Linear Goal Programming |
| 相關次數: | 點閱:102 下載:40 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣高速鐵路(Taiwan High Speed Rail, THSR)為平衡區域發展之考量,其部分站點位於較偏遠的地區,增加了旅次總時間,因此其接駁系統的整合扮演關鍵要角。為此,高鐵公司持續以補助計畫支持接駁公車的免費營運,然補助為一龐大支出。考量到前述轉乘時間與營運成本問題,本研究欲以多目標規劃達成高鐵在時間上的無縫轉乘,透過建立一數學模式同時考慮政府、旅客及業者等三個公共運輸系統中的利害關係人,重新產製高鐵接駁公車的時刻表。本研究將此問題建構為一搶占式目標規劃問題(Preemptive Goal Program),以順序式線性目標規劃方法(Sequential Linear Goal Programming, SLGP)求解。本研究共設計四個情境:基本模式、固定時點模式、定期車優先模式以及直達車優先模式,並根據目標優先性的不同,設計旅客導向實驗與業者導向實驗,以臺南市高鐵接駁公車H31路為基準,比較不同模式、不同實驗中的旅客轉乘等候時間與成本效益。根據結果,四個模式的等候時間及成本效益皆優於原始接駁公車班表;若將兩種實驗相比,業者導向實驗的成本效益高出許多,發車班次數也較貼近現況、更利於營運者實施,因此本研究建議,在產製接駁系統班表時,在已限制旅客最長等候時間的條件下,可提升業者最小化成本的目標優先性,滿足業者需求,同時讓學術研究的成果與現實條件接軌。
Several stations of Taiwan High Speed Rail, abbreviated as THSR, are located in suburban areas to achieve a balance between urban and rural regions, increasing the total time of trips. Therefore, its transfer system plays a decisive role. THSR company keeps supporting the operation of free feeder bus through subsiding but it’s a huge expenditure. Considering transfer time and operation costs, this study wants to achieve time seamless transfer of high speed rail using multi-objective programming and rearranges the timetable of the feeder bus by constructing four mathematical models. The models consider the expectations of three stakeholders involved in public transportation. The study formulates the problem as a preemptive goal program and solves it by sequential linear goal programming method. The four models are basic model, fix time spot model, daily train priority model and express train priority model. The study also constructs two kinds of experiment named passenger-oriented experiment and operator-oriented experiment that distinguished by the different priority sequences. The condition of H31 route, the feeder bus of HSR in Tainan City, is used to set the factors in those models. This paper compares the transfer waiting time of passengers and cost efficiency in different models and experiments. According to the results, the two performance indexes of four models are better than original bus timetable. The cost efficiency of operator-oriented experiment is higher than another one with a departure number closer to current situation. Therefore, when arranging the timetable of transfer systems, the study suggests that the priority of minimizing operators’ costs can be lifted under the condition that the maximum waiting time is limited. This can satisfy operators’ requirement and make results of academic studies meet reality.
Abdolmaleki, M., Masoud, N., & Yin, Y. (2020). Transit timetable synchronization for transfer time minimization. Transportation Research Part B: Methodological, 131, 143-159.
Cao, Z., Ceder, A., Li, D., & Zhang, S. (2019). Optimal synchronization and coordination of actual passenger-rail timetables. Journal of Intelligent Transportation Systems, 23(3), 231-249.
Ceder, A., Golany, B., & Tal, O. (2001). Creating bus timetables with maximal synchronization. Transportation Research Part A: Policy and Practice, 35(10), 913-928.
Ceder, A., & Wilson, N. H. (1986). Bus network design. Transportation Research Part B: Methodological, 20(4), 331-344.
Chou, J. S., Chien, Y. L., Nguyen, N. M., & Truong, D. N. (2018). Pricing policy of floating ticket fare for riding high speed rail based on time-space compression. Transport Policy, 69, 179-192.
Daganzo, C. F. (2010). Public Transportation Systems: Basic Principles of System Design, Operations Planning and Real-Time Control. Institute of Transportation Studies University of California at Berkeley.
dell’Olio, L., Ibeas, A., & Cecín, P. (2011). The quality of service desired by public transport users. Transport Policy, 18(1), 217–227.
Du, P., Liu, C., & Liu, Z. L. (2009). Walking time modeling on transfer pedestrians in subway passages. Journal of Transportation Systems Engineering and Information Technology, 9(4), 103-109.
Fonseca, J. P., van der Hurk, E., Roberti, R., & Larsen, A. (2018). A matheuristic for transfer synchronization through integrated timetabling and vehicle scheduling. Transportation Research Part B: Methodological, 109, 128-149.
Furth, P. G., & Wilson, N. H. (1981). Setting frequencies on bus routes: Theory and practice. Transportation Research Record, 818(1981), 1-7.
Gong, H., Chen, X., Yu, L., & Wu, L. (2016). An application-oriented model of passenger waiting time based on bus departure time intervals. Transportation Planning and Technology, 39(4), 424-437.
Guo, S., Yu, L., Chen, X., & Zhang, Y. (2011). Modelling waiting time for passengers transferring from rail to buses. Transportation Planning and Technology, 34(8), 795-809.
Hultkrantz, L. (2013). A note on high-speed rail investments and travelers’ value of time. Journal of Rail Transport Planning & Management, 3(1-2), 14-21.
Ibarra-Rojas, O. J., Giesen, R., & Rios-Solis, Y. A. (2014). An integrated approach for timetabling and vehicle scheduling problems to analyze the trade-off between level of service and operating costs of transit networks. Transportation Research Part B: Methodological, 70, 35-46.
IEA (2020), The role of CCUS in low-carbon power systems, IEA, Paris https://www.iea.org/reports/the-role-of-ccus-in-low-carbon-power-systems, License: CC BY 4.0
Ignizio, J. P. (1983). Generalized goal programming an overview. Computers & Operations Research, 10(4), 277-289.
Ignizio, J. P., & Cavalier, T. M. (1994). Linear programming. Prentice-Hall, Inc.
Ignizio, J. P., & Perlis, J. H. (1979). Sequential linear goal programming: Implementation via MPSX. Computers & Operations Research, 6(3), 141-145.
Ijiri, Y. (1965). Management goals and accounting for control (Vol. 3). North Holland Publishing Company.
Isermann, H. (1982). Linear lexicographic optimization. Operations-Research-Spektrum, 4(4), 223-228.
Jääskeläinen, V. (1969). A goal programming model of aggregate production planning. The Swedish Journal of Economics, 14-29.
Jamili, A., & Aghaee, M. P. (2015). Robust stop-skipping patterns in urban railway operations under traffic alteration situation. Transportation Research Part C: Emerging Technologies, 61, 63-74.
Jang, W. (2010). Travel time and transfer analysis using transit smart card data. Transportation Research Record, 2144(1), 142-149.
Jiang, Z. B., & Huang, Q. X. (2013). A service-based method to generate shuttle bus timetable in accordance with rail transit timetable. Procedia-Social and Behavioral Sciences, 96, 1890-1897.
Kikuchi, S., & Vuchic, V. R. (1982). Transit vehicle stopping regimes and spacings. Transportation Science, 16(3), 311-331.
Kim, M., Kotz, D., & Kim, S. (2006). Extracting a mobility model from real user traces. In Proceedings of the 25th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM)
Li, W., Yan, X., Li, X., & Yang, J. (2020). Estimate passengers’ walking and waiting time in metro station using smart card data (scd). IEEE Access, 8, 11074-11083.
Limsawasd, C., Athigakunagorn, N., Khathawatcharakun, P., & Boonmee, A. (2022). Skip-Stop Strategy Patterns optimization to enhance mass transit operation under physical distancing policy due to COVID-19 pandemic outbreak. Transport Policy, 126, 225-238.
Liu, Z. G., & Shen, J. S. (2007). Regional bus operation bi-level programming model integrating timetabling and vehicle scheduling. Systems Engineering-Theory & Practice, 27(11), 135-141.
Lyons, G., & Harman, R. (2002). The UK public transport industry and provision of multi-modal traveller information. International Journal of Transport Management, 1(1), 1-13.
Nwachukwu, A. (2014). Assessment of passenger satisfaction with intra-city public bus transport services in Abuja, Nigeria. Journal of Public Transportation, 17(1), 99–119.
Ottomanelli, M., Iannucci, G., & Sassanelli, D. (2012). Simplified model for pedestrian–vehicle interactions at road crossings based on discrete events system. Transportation Research Record, 2316(1), 58-68.
Parbo, J., Nielsen, O. A., & Prato, C. G. (2014). User perspectives in public transport timetable optimisation. Transportation Research Part C: Emerging Technologies, 48, 269-284.
Parbo, J., Nielsen, O. A., & Prato, C. G. (2018). Reducing passengers’ travel time by optimising stopping patterns in a large-scale network: A case-study in the Copenhagen Region. Transportation Research Part A: Policy and Practice, 113, 197-212.
Robinson, R. (1993). Cost-effectiveness analysis. British Medical Journal, 307(6907), 793-795.
Shafahi, Y., & Khani, A. (2010). A practical model for transfer optimization in a transit network: Model formulations and solutions. Transportation Research Part A: Policy and Practice, 44(6), 377-389.
Shang, P., Li, R., Liu, Z., Yang, L., & Wang, Y. (2018). Equity-oriented skip-stopping schedule optimization in an oversaturated urban rail transit network. Transportation Research Part C: Emerging Technologies, 89, 321-343.
Sherali, H. D. (1982). Equivalent weights for lexicographic multi-objective programs: Characterizations and computations. European Journal of Operational Research, 11(4), 367-379.
Sohail, M., Maunder, D. A. C., & Cavill, S. (2006). Effective regulation for sustainable public transport in developing countries. Transport policy, 13(3), 177-190.
Sun, C. J., Zhou, W., & Wang, Y. Q. (2008). Scheduling combination and headway optimization of bus rapid transit. Journal of Transportation Systems Engineering and Information Technology, 8(5), 61-67.
Sutcliffe, S., & Court, J. (2006). A toolkit for progressive policymakers in developing countries. Research and Policy in Development Programme.
Takamatsu, M., & Taguchi, A. (2020). Bus timetable design to ensure smooth transfers in areas with low-frequency public transportation services. Transportation Science, 54(5), 1238-1250.
Tang, L., & Xu, X. (2022). Optimization for operation scheme of express and local trains in suburban rail transit lines based on station classification and bi-level programming. Journal of Rail Transport Planning & Management, 21, 100283.
Tucker, H., & Leager, M. C. (1942). Highway Economics. International textbook Company.
Tyrinopoulos, Y., & Antoniou, C. (2008). Public transit user satisfaction: Variability and policy implications. Transport Policy, 15(4), 260–272.
Van Lierop, D., Badami, M. G., & El-Geneidy, A. M. (2018). What influences satisfaction and loyalty in public transport? A review of the literature. Transport Reviews, 38(1), 52-72.
Vuchic, V. R. (2004). Urban transit: operations, planning, and economics. John Wiley & Sons.
Wahaballa, A. M., Kurauchi, F., Schmöcker, J. D., & Iwamoto, T. (2018). Rail-to-Bus and Bus-to-Rail transfer time distributions estimation based on passive data. In Proceedings of the 14th Conference on Advanced Systems in Public Transport and Transit Data (pp. 1-7).
Wu, Y., Zhu, Y., & Cao, T. (2018). Mathematical analysis and an exact solution combined with preprocessing method for resynchronizing of bus timetable problem. Mathematical Problems in Engineering, 2018.
Zhang, B., Zhou, D., Huang, N., Zhou, X., & Ni, X. (2022). Coordination and Optimization of Long-Distance Passenger Departure Timetable Connected to High-Speed Railway Station: Considering the Heterogeneity of Transfer Passengers Demand. Journal of Advanced Transportation, 2022.
Zhang, C., Hu, Y., & Lu, W. (2022). Evaluating the Comprehensive Benefit of Public Transport Service–The Perspective of Three Stakeholders. Promet-Traffic & Transportation, 34(2), 179-193.
Zhao, L., Chien, S. I., Spasovic, L. N., & Liu, X. (2018). Modeling and optimizing urban bus transit considering headway variation for cost and service reliability analysis. Transportation Planning and Technology, 41(7), 706-723.
Zhou, Y., Yao, L., Gong, Y., & Chen, Y. (2016). Time prediction model of subway transfer. SpringerPlus, 5(1), 1-11.
Zhu, W., Fan, W., Wei, J., & Fan, W. D. (2020). Complete estimation approach for characterizing passenger travel time distributions at rail transit stations. Journal of Transportation Engineering, Part A: Systems, 146(7), 04020050.
台灣高鐵(2022年5月30日)。高鐵台中站快捷公車台中公園線7/1起取消高鐵旅客免費接駁服務。https://www.thsrc.com.tw/ArticleContent/7595c1fb-1795-458d-919c-aa5e1c60f931
江衍緯、徐淵靜(2002)。台灣高速鐵路列車運行策略對旅客特性之影響[未出版之碩士論文]。國立交通大學交通運輸研究所。
交通部統計處(2023)。交通部統計查詢網。網址:https://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100。檢索日期:2023年1月20日。
呂詠柔(2020年7月15日)。台南高鐵接駁車等1小時「全台最廢」?南市府這樣說。好房網News。https://news.housefun.com.tw/news/article/148426265341.html
李文儀(2008年8月12日)。免費接駁車年底停駛 交部將推高鐵直達公車。自由時報。https://news.ltn.com.tw/news/life/paper/234079
林繼國、陳天賜、黃新薰、蘇振維、張開國、葉祖宏、周文靜、吳熙仁、洪憲忠、鄭信鴻、黃士軒(2019)。2020年版運輸政策白皮書-運輸安全。中華民國交通部。
洪瑞琴(2019年6月28日)。高鐵快捷公車奇美線 7月1日起減班。自由時報。https://news.ltn.com.tw/news/life/breakingnews/2836821
許育凡(2013)。無縫轉乘班表設計之研究[未出版之碩士論文]。國立交通大學運輸科技與管理學系碩士班。
張有恆(2009)。都市公共運輸三版。華泰文化事業公司。
陳建志、張菁雅(2012年2月25日)。高鐵接駁車兒藝館路線 將取消免費。自由時報。https://news.ltn.com.tw/news/local/paper/563478
蘇昭銘、張志鴻、吳沛儒、林良泰、王晉元、褚志鵬、張朝能、許凱創(2019)。公共運輸轉乘時間縫隙檢核指標之建立與應用。運輸計劃季刊。48(4),253-276。
嘉義客運(2012年2月13日)。嘉義客運針對BRT公車3/1終止免費接駁媒體報導澄清說明。https://wwm.cibus.com.tw/modules/news/article.php?storyid=204
廖雪茹(2012年2月25日)。竹縣》高鐵東門線 免費接駁到5.31。自由時報。https://news.ltn.com.tw/news/local/paper/563495
臺南市政府交通局(2023)。臺南市政府資料開放平台。網址:https://data.tainan.gov.tw/。檢索日期:2023年1月17日。
蔡文居(2019年5月8日)。台南高鐵快捷公車H62奇美線 7/1起搭乘「不再免費」。自由時報。https://news.ltn.com.tw/news/life/breakingnews/4294281
蔡政珉(2018年6月22日)。高鐵快捷公車苗栗-竹南7月不停駛 續行至明年2月。自由時報。https://news.ltn.com.tw/news/life/breakingnews/2466330
謝貴祥(1996)。以旅次鏈探討臺灣城際間運具選擇之研究[未出版之碩士論文]。國立成功大學交通管理科學研究所。
鍾文明(1994)。高速鐵路與傳統鐵路市場範圍之研究[未出版之碩士論文]。國立交通大學土木工程研究所。
校內:立即公開