| 研究生: |
張鼎宗 Chang, Ting-Tsung |
|---|---|
| 論文名稱: |
有限高圓柱尾流在臨界雷諾數流場分析 Investigation of Wake behind Finite Cylinder at Critical Reynolds Number |
| 指導教授: |
苗君易
Miau, Jiun-Jih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 有限高圓柱 、臨界雷諾數尾流 、希爾伯特轉換 、高階統計量 |
| 外文關鍵詞: | critical Reynolds number, finite cylinder, Hilbert transform, statistics |
| 相關次數: | 點閱:146 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨詳述臨界雷諾數下三維圓柱尾流特性,使用熱線式測速儀量測臨界雷諾數4×105 下的圓柱尾流的紊流訊號。從得到訊號,進行高階統計量的分析,例如偏度因子(skewness)以及平坦度(flatness),從這些高階統計值可以看出流場中不同的結構以及相關的物理關聯。其中,偏袒度因子可以看出渦流拉伸的結構,這在剪應力層中是很重要的物理現象;平坦度可以看出紊流訊號的間歇性,而紊流的間歇性與自由流如何被捲入尾流區的機制息息相關。最後,我們回到最基本的紊流方程式,從方程式中可以看到雷諾應力在動量傳遞扮演重要的角色,藉此,可以看到下洗氣流和湧升氣流的影響,這兩個主要的動量傳遞主宰整個三維流場的結構,這兩個流動在探討臨界諾數下三維尾流的流場中有很重要的地位。
最後,我們分別對流場訊號進行線性和非線性的頻譜分析;由於快速傅立葉轉換屬於線性分析,分析出來的結果顯示出所有線性結果的總和,在數學上是正確的,但是物理上卻是有問題的,明顯地忽略掉許多非線性的系統特性。有鑑於紊流訊號非定常、非線性的特徵,第二步則採用希爾伯特轉換(EMD)拆解量測到的紊流訊號,針對不同的模態拆解出不同的特徵的訊號,IMF。從這些IMF中可以找到潛藏在紊流訊號中的特徵訊號。我們也成功地找到Karman渦流溢放的頻率。雖然FFT無法成功拆解能量頻譜,但卻能看出整體的能量分布,顯示出慣性力在近尾流區域主宰整個流場的趨勢。而EMD成功地轉換出相對應的渦流溢放頻率,但也拆出其他頻率的分量,這也是未來可以進一步研究的地方。
Presented research aims on the three dimensional turbulent wake structure at critical Reynolds number. Experiment was carried out in 4m×3m close type wind tunnel with a finite circular cylinder at Reynolds number 4×105, long time average measurement was carried out to measure the velocity signal within the near wake region by hot wire anemometer. We analyzed turbulence data with statistical approaches, like building probability density function (PDF), skewness, and flatness. These statistics represent different turbulence relevant physics respectively. For skewness, it indicates the vortex stretching in the free shear layer; flatness shows the intermittence of the turbulence and the feature of entrainment. Besides, from the turbulence momentum equation, the additional term, Reynolds stress, drives the momentum transport in turbulence flow. It indicates two important flow characteristics in finite cylinder wake i.e. downwash and upwash, dominating the whole flow structure in the cylinder wake.
Consequently, we analyzed the turbulence spectrum by both linear and nonlinear analysis. First, the fast Fourier transform provides linear analysis whose final solution is the sum of all linear solutions of the turbulence data, this is Fourier’s view. Nevertheless, turbulence is nonstationary and nonlinear, in this way, Hilbert transform (EMD) is applied. Processed by Hilbert transform, we decompose several modes, called IMF, in our signal. Such nonlinear analysis shows us the local turbulence structure, unlike the Fourier’s approach, and we successfully discover the Karman vortex shedding hidden in the three dimensional wake. Interestingly, there are some residuum modes which has its principle frequency, but is much lower than Karman vortex. This gives a way for future work.
[1] Fox, T. A. and West, G. S. (1993), “Fluid Induced Loading of Cantilevered Circular Cylinder in a Low Turbulence Uniform Flow. Part 1: Mean Loading with Aspect Ratios in the Range 4 to 30,” Journal of Fluids and Structures, vol.7, pp.1-14
[2] Ayoub, A. and Karamcheti, K. (1982), “An Experiment on the Flow Past a Finite Circular Cylinder at High Subcritical and Supercritical Reynolds Numbers,” J. Fluid Mech., vol. 118, pp.1-26
[3] Lee, H. H. (2011), “An Experimental Study on the Free-end Downwash Effect to Karman Vortex Shedding from a Finite Cylinder,” PhD, thesis, Department of Aeronautics and Astronautics, National Cheng Kung University
[4] Snyder, W. and Lawson, R. E. (1991), “Fluid Modeling Simulation of Stack-Tip Downwash for Neutrally Buoyant Plumes,” Atmosphere Environment, vol. 25A, No. 12, pp 2837-2850
[5] Johnston, C. R. and Wilson, D. J. (1997), “A Vortex Model for Plume Downwash into Stack Wakes,” Atmosphere Environment, vol. 31, No. 1, pp 13-20
[6] Park, C. W. and Lee, S. J. (2000), “Free End Effects on Near Wake Flow Structure Behind a Finite Circular Cylinder,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 88, pp. 231-246
[7] Summer, D., Heseltine, J. L. and Dansereau, O. J. P. (2004), “Wake Structure of a Finite Circular Cylinder of Small Aspect Ratio,” Experiments in Fluids, vol. 37, pp. 720-730
[8] Wang, H. F. and Zhou, Y. (2009), “The Finite-Length Square Cylinder near Wake,” J. Fluid Mech., vol. 638, pp. 453-490
[9] Simpson, R. L. and Chew, Y. T. (1981), “The Structure of a Separating Turbulent Boundary Layer. Part 2. Higher-Order Turbulence Results,” J. Fluid Mech., vol. 113, pp. 53-73
[10] Davidson, P. A. (2004), Turbulence: An Introduction for Scientists and Engineers, 1st Edition, Oxford University Press
[11] Batchelor, G. K. (1953), The Theory of Homogeneous Turbulence, Cambridge University Press
[12] Huang, E. N., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, Nai-Chyuan, Tung. C. C., and Liu, H. H., (1996), “The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis,” Proc. R. Soc. Lond. A454, pp. 903-995
[13] Jørgensen, F. E., (2002) “How to Measure Turbulence with Hot-Wire Anemometry-A Practical Guide,” Dantec Dynamics
[14] Grant, H. L., (1958), “Large Eddies of Turbulent Motion,” J. Fluid Mech., vol. 4, pp. 149-190
[15] Townsend, A. A., (1980), “ The Structure of Turbulent Shear Flow,” 2nd Edition, Cambridge University Press
[16] Durbin, P. A., Pettersson Reif, B. A., (2001), “Statistical Theory and Modeling for Turbulent Flows,” John Willey & Sons, LTD
[17] Simpson, R. L., Chew, Y. T., and Shivaprasad, B. G., (1981), “The Structure of a Separating Turbulent Boundary Layer. Part 1.Mean Flow and Reynolds Stress,” J. Fluid Mech., vol. 113, pp. 23-51
[18] Davies, P. O. A. L., (1966), “ Turbulence Structure in Free Shear Layer,” AIAA, vol.4, No. 11
[19] Dengel, P. and Fernholz, H. H., (1990), “An Experimental Investigation of an Incompressible Turbulent Boundary Layer in the Vicinity of Separation,” J. Fluid Mech., vol. 212, pp. 615-636
[20] Roshko, A, (1976), “Structure of Turbulent Shear Flows: A New Look,” AIAA, vol. 14, No. 10
[21] Jian, Q., (1994), “Skewness Factor of Turbulent Velocity Derivative,” ACTA Mechanica SINICA, vol. 10, No. 1
[22] Fox, T. A. and West, G. S., (1993), “Fluid Induced Loading of Cantilevered Circular Cylinder in a Low Turbulence Uniform Flow. Part 2: Fluctuating Loads on a Cantilever of Aspect Ratio 30,” Journal of Fluids and Structure, vol. 7, pp. 15-28
[23] Fox, T. A. and West, G. S., (1993), “Fluid Induced Loading of Cantilevered Circular Cylinder in a Low Turbulence Uniform Flow. Part 3: Fluctuating Loading with Aspect Ratios 4 to 25,” Journal of Fluids and Structures, vol. 7, pp. 375-386
[24] Bearman, P. W., (1967), “ On Vortex Street,” J. Fluid Mech., vol. 28, part 4, pp. 625-641
[25] Kiya, M., Tamura, H. and Arie, M., (1980), “Vortex Shedding from a Circular Cylinder in Moderate Reynolds Number Shear Flow,” J. Fluid Mech., vol. 141, part 4, pp. 721-735
[26] Roshko, A., (1960), “Experiments on The Flow Past a Circular Cylinder at Very High Reynolds Number,”
[27] Saha, A. K., Muralidhar, K. and Biswas, G. (2000), “Experimental Study of Flow Past a Square Cylinder at High Reynolds Number,” Experiments in Fluids, vol. 29, pp. 553-563
[28] Bearman, P. W., (1969), “On Vortex Shedding from a Circular Cylinder in The Critical Reynolds Number Regime,” J. Fluid Mech., vol. 37, part 3, pp. 577-585
[29] Tanaka, S. and Murata, S., (1999), “An Investigation of Wake Structure and Aerodynamic Characteristics of a Finite Circular Cylinder,” JSME International Journal, Series B, vol. 42, No. 2
[30] Bearman, P. W., (1997), “Near Wake Flows Behind Two and Three dimensional Bluff Bodies,” Journal of Wind Engineering and Industrial Aerodynamics, 69-71, pp. 33-54
[31] Adaramola, M. S., Akinlade, O. G., Summer, D., Bergstrom, D. J., and Schenstead, A. J., (2006), “Turbulent Wake of a Finite Circular Cylinder of Small Aspect Ratio,” Journal of Fluids and Structures, vol. 22, pp. 919-928
[32] Lefeuvre, N., Thiesset, F., Djenidi, L., and Antonia, R., (2014), “ Statistics of Turbulent Kinetic Energy Dissipation Rate and Its Surrogates in a Square Cylinder Wake Flow,” Physics of Fow, No. 26
[33] Burattini, P., Lavoie, P., and Antonia, R. A., (2005), “On The Normalized Turbulent Energy Dissipation Rate,” Physics of Fluids, No. 17
[34] Achenbach, E. A., and Heinecke, E., (1981), “On The Vortex Shedding from Smooth and Rough Cylinders in The Range of Reynolds Numbers 6×103 to 5×106,” J. Fluid Mech., vol. 109, pp. 239-251
[35] Wei, T., and Smith, C. R., (1986), “Secondary Vortices in The Wake of Circular Cylinder,” J. Fluid Mech., vol. 169, pp. 513-533
[36] Lewellen, W. S., Teske, M., and Coleman Dup. Donaldson, (1973), “Application of Turbulence Model Equations to Axisymmetric Wakes,” AIAA, vol. 12, No. 5
[37] Wu, S. H., (2003), “Instantaneous Properties of Low Frequency Modulations and Three Dimensionality Associated with Vortex Shedding,” PhD, thesis, Department of Aeronautics and Astronautics, National Cheng Kung University
[38] 方忠浩(2011),「圓柱表面流場在預臨界區之特性探討」,國立成功大學航空與太空工程學系碩士論文
[39] Haung, Norden E., Zheng Shen, and Long, Steven R., (1999) “A New View of Nonlinear Water Waves: The Hilbert Spectrum,” Annu. Rev. Fluid Mech., No. 31, pp. 417-457
[40] Simpson, R., (2001), “Junction Flows,” Annu. Rev. Fluid Mech., No. 33, pp. 415-439
[41] Gerrard, J. H., (1965), “ The Mechanics of the Formation Region of Vortices behind Bluff Bodies,”
[42] Susan Bloor, M., (1963), “ The transition to Turbulence in the Wake of Circular Cylinder,”