簡易檢索 / 詳目顯示

研究生: 葉日哲
Yeh, Jih-Che
論文名稱: 後燃器含隔熱罩之高速流場共軛熱傳數值模擬分析
Numerical Analyses of Conjugate Heat Transfer in the High-speed Flow of an Afterburner with a Heat Shield
指導教授: 江滄柳
Jiang, Tsung-Leo
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 78
中文關鍵詞: 薄膜冷卻後燃器共軛熱傳
外文關鍵詞: afterburner, conjugate heat transfer, film cooling
相關次數: 點閱:92下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   後燃器具有高溫燃燒特性,以數值模擬方法來分析其燃燒及熱傳特性具有其吸引力及必要性,是一值得研發的課題。因此,本研究以數值方法模擬分析後燃器含隔熱罩之共軛熱傳現象,並探討薄膜冷卻對隔熱罩溫度之影響。為分析後燃器含隔熱罩內外流道之流場及其與隔熱罩固體間之熱傳現象,本研究新發展一計算模式,利用紊流場在計算邊界區域所使用的邊牆函數,可以同時求解高速紊流場和固體之間的共軛熱傳問題,並成功的模擬出高低溫差達1000K以上的流場以及夾在其中的固體溫度分布。模擬結果則顯示,忽略軸向熱傳將會使隔熱罩出口端溫較高,而較高之冷卻流道入口速度,可提供較高之冷卻質量流率,並帶走較多之熱量,因而可降低隔熱罩之溫度,以效率的觀點來看,相同的冷卻流道入口邊界條件,有薄膜冷卻的散熱效率會比沒有薄膜冷卻來的高,而冷卻細縫大小的改變也會影響冷卻效率,在相同冷卻流道入口條件下,存在一最佳比例,這個比例會隨著冷卻流道流量改變,在冷卻細縫構造方面,藉由三種不同的排列方式使冷卻流體能以不同角度注入主流道,結果顯示,和軸向呈水平角度注入主流道為最佳方式。這個共軛熱傳分析方法,若結合噴霧燃燒模式,將可以應用至含隔熱罩之後燃器或衝壓引擎燃燒室高速紊流燃燒流場之模擬分析。

     It is of practical importance for the development of a numerical method for the combustion and heat-transfer analyses of afterburners, since they are characterized by the high-temperature combustion which is hard to measure. In the present study, numerical analyses of the three-dimensional conjugate heat transfer of an afterburner installed with a heat shield have been conducted. A new computational model for the conjugate flow and heat-transfer, characterized by the simultaneous solution of both flow and conduction in the solid, has been developed for the highly turbulent flow and applied to the film-cooling analysis of the heat shield with a temperature difference between both sides of the heat shield above 1000K. Numerical results obtained from the present study reveal that a higher shield temperature at outlet is predicted if the axial conduction in solid is neglected. A higher mass flow rate in the coolant flow, generated by a higher inlet velocity, makes the temperature drop of the heat shield more significant. For the best cooling effectiveness, the shield with film-cooling is batter than that without film-cooling at the same coolant inlet boundary condition. There exists an optimal slot width for the best film cooling effect. For various injection angles, the case with a horizontal slot makes the biggest temperature drop in the shield. The present model can be applied to the afterburner and ramjet analyses with high-speed turbulent combustion flow, if the conjugate heat transfer model is coupled with the spray combustion model.

    中文摘要 I  Abstract II  目錄 IV  表目錄 VI  圖目錄 VII  符號說明 XII  第一章 導論 1 §1-1 前言 1 §1-2 文獻回顧 2 §1-3 研究動機 7 第二章 數學及物理模式 8 §2-1 真實後燃器隔熱罩之各種物理現象 8 §2-2 模型的基本假設與統御方程式 9 第三章 數值方法與格點系統 16 §3-1 簡介 16 §3-2 計算程序 16 §3-3 共軛熱傳計算程序 19 §3-4 格點系統 20 第四章 結果與討論 21 §4-1 共軛熱傳計算結果 21 §4-2 無薄膜冷卻之後燃器流場分布與隔熱罩溫度分23 §4-3 薄膜冷卻對後燃器隔熱罩影響 28 §4-4 有無薄膜冷卻對隔熱罩影響之綜合比較 34 §4-5 冷卻細縫寬度對薄膜冷卻效應的影響 36 §4-6 冷卻細縫形狀對薄膜冷卻效應的影響 36 第五章 結論與未來工作 39 參考文獻 41

    【1】H. Liu “Three-dimension numerical study on the combustion flow in an afterburner” AIAA-99-3752, 1999.
    【2】Q. Zeng, Y. Sheng and Q. Zhou “Calculation of recirculating flow behind flame-holders” Acta Aeronautica et Astronautica Sinica, Vol.6, P.495-497, Oct, 1985.
    【3】H. Nasir, S. V. Ekkad, and S. Acharya, “Effect of compound angle injection on flat surface film cooling with large streamwise injection angle” Experimental thermal and fluid science 25, P.23-29, 2001.
    【4】M. Ravichandran, and V. Ganesan, “A study on 3-D velocity distribution of isothermal flows behind an afterburner flame stabilizer” ISABE Vol.1, P.439-448, 1993.
    【5】M. A. Macquisten, and A. P. Dowling, “Combustion oscillations in a twin-stream afterburner.” AIAA Paper 93-4392, 1993.
    【6】D. Bohn, and T. Heuer, “Conjugate flow and heat transfer calculation of a high-pressure turbine nozzle guide vane”, AIAA-2001-3304, p.1-10, 2001.
    【7】G. Lavergne, P. Hebrard, and P. H. Donnadille, “Experimental and computation study of liquid droplets impinging on an afterburner” ISABE, P1018-1025, 1991.
    【8】M. Ravichandran, and V. Ganesan, “Aerodynamic Flow investigation in an isothermal model of an afterburner” Experiments in fluid, 17, p.59-67, 1993.
    【9】C. Zhu, “Calculation of wall temperatures of afterburners with convective and film cooling” Northwestern Polytechnical University, Journal, p.21-28, vol.2, Jan.1984.
    【10】Y. Xiao, and R. S. Amano, “A steady on effective heat transfer characteristics in an afterburner with ceramic stabilizer” AIAA Paper 2003-0338, 2003.
    【11】H. Zhang, H. Liu, W. Shang, and J. Zhao, “Numerical computations of afterburner flows and heat shield buckling”, J. of Nanjinj University of Aeronautic & Astronautic, p.394-399, Vol.32, 8, 2000.
    【12】G. Laschet, S. Rex, D. Bohn, and N. Moritz, “3-D Conjugate analysis of cooled coated plates and homogenization of their thermal properties. “, Numerical Heat Transfer, part. A, p.91-106, 2002.
    【13】J. L. Champion, B. Deshaier, R. Curtelin, and M. Desaulty, “Aerodynamical structure of the wall-flow over a wavy surface partially cooled by air injection through multiperforations”, AIAA-99-1016, p.1-8. 1999.
    【14】H. Blomerius, and N. K. Mitra, “Numerical investigation of convective heat transfer and pressure drop in wave ducts”, Numerical heat transfer part. A, p.37-53, 2000.
    【15】J. S. Lee, H. G. Jung, and S. B. Kang, “Effect of embedded vortices on film cooling performance on a flat.” Experimental Thermal and Fluid Science 26 p.197-204.
    【16】I. T. Al-Zaharnah, “Entropy analysis in pipe flow subjected to external heating”, Entropy, p.391-403, Vol.5, 2003.
    【17】E. Bilgen, and T. Yamane, “Conjugate heat transfer in enclosures with openings for ventilation”, International Journal of Heat and Mass Transfer, p.401-411, Vol.40, 2004.
    【18】O. Polat, and E. Bilgen, “Conjugate heat transfer in inclined open shallow cavities”, International Journal of Heat and Mass Transfer, p.1563-1573, Vol.46, 2003.
    【19】H.Y. Li, and W. M. Yan, “Estimation of wall heat flux in an inverse convection problem”, J. Thermophysic, p.394-396, Vol.13, No.3, 1998.
    【20】K. D. Cole, “Conjugate heat transfer from a small heated strip “, International Journal of Heat Mass Transfer, p.2709-2791, No.11, Vol.40, 1997.
    【21】X. Chen, and P. Han, “A note on the solution of conjugate heat transfer problems using SIMPLE-like algorithms.”, International Journal of Heat and Fluid Flow, p.463-469, 2000.
    【22】H. Yapici, and B. Albayrak, “Numerical solutions of conjugate heat transfer and thermal stresses in a circular pipe externally heated with non-uniform heat flux”, Energy Conversion and Management, p.927-937, 2004.
    【23】L. S. Frederick, “Conjugate condition convection heat transfer with a High-Speed boundary”, Journal of Thermophysics and Heat Transfer, 275-281, Vol.8, No.2, April-June, 1994.
    【24】趙堅行, 劉全忠 和 劉洪 “數值模擬加力燃燒室熱態流場” 燃燒科學與技術 , p.111-119, Vol.1, No. 2, 1995。
    【25】王寶官, 李永康 和 胡正權, “帶氣膜冷卻的火焰筒壁溫的數值分析” 航空學報, p.415-421, Vol.16, No.4, 1995 。
    【26】A, A, Amsden, “KIVA-3: A KIVA Program with Block-Structured Mesh for Complex Geometries “, Los Alamos National Laboratory Report LA-12503-MS, 1993.
    【27】A. A. Amsden, P. J. O’Rourke and T. D. Butler, “KIVA-2: A Computer Program for Chemically Reactive Flows with Sprays”, Los Alamos National Laboratory Report LA-11560-MS, 1989.
    【28】W. E. Pracht, “An arbitrary Lagrangian-Eulerian computer method for all flow speed”, J. Computer. Phys., p.132, Vol. 17, 1975.
    【29】S. V. Patankar, “Numerical heat transfer and fluid flow, hemisphere”, Washington D. C., 1980.
    【30】林志隆, “紊流強度對傾壁面薄膜冷卻之影響”, 國立成功大學航空太空研究所碩士論文, 6 , 1991.
    【31】J. S. Kwak, and J. C. Han, “Heat transfer coefficients and film-Cooling effectiveness on a gas turbine blade tip”, Transactions of the ASME, p.494-502, Vol.125, June, 2003.

    下載圖示 校內:立即公開
    校外:2006-02-09公開
    QR CODE