簡易檢索 / 詳目顯示

研究生: 林咸嘉
Lin, Hsien-Chia
論文名稱: 蝴蝶蘭葉綠體基因體之分析
Analysis of the Chloroplast Genome in Phalaenopsis aphrodite subsp. formosana
指導教授: 吳文鑾
Wu, Wen-Luan
張清俊
Chang, Ching-Chun
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 157
中文關鍵詞: 蝴蝶蘭葉綠體基因體
外文關鍵詞: chloroplast genome, Phalaenopsis aphrodite subsp. formosana
相關次數: 點閱:136下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   台灣阿嬤蝴蝶蘭(Phalaenopsis aphrodite subsp. formosana)葉綠體基因體的完整序列已經定序完成。蝴蝶蘭葉綠體基因體為雙股螺旋的DNA所組成,大小為148,964 bp,包括一對相反重複的序列(IRs)大小約為25,732 bp,被一個大單一基因區域(LSC) 和一個小的單一基因區域(SSC)所分離,大小分別約為85,947 bp和11,543 bp。基因體中共包含76個蛋白質轉錄基因,4種不同的核糖體基因,30個不同的tRNA基因。使用225 bp作為臨界點,亦定出有24個putative ORF。整個蝴蝶蘭葉綠體基因體的結構較類似於雙子葉植物,而非單子葉植物。17個基因存在內含子,包含有六個tRNA與11個蛋白質轉錄基因,其中clpP、rps12與ycf3等三個基因則有各兩個內含子。不同於其他被子植物葉綠體基因體,通常被子植物葉綠體基因體中有一組11個完整的NADH dehydrogenase基因,但是在蝴蝶蘭葉綠體基因體中則缺少ndhA、ndhH和ndhF基因,而ndhE、ndhG和ndhI有序列斷裂,並可能喪失基因功能。蝴蝶蘭葉綠體基因體基因的遺失,造成在已知的可行光合作用的被子植物葉綠體基因體,其含有最小的SSC。葉綠體基因體中的rpl2需要經過RNA編輯來產生正確的起始密碼,ndhB、ndhC、ndhD、ndhJ及ndhK則無法藉由RNA編輯來恢復其正常功能, ycf1則可能需要經由RNA編輯來恢復正常功能。Tajima’s relative rate test則顯示蝴蝶蘭葉綠體基因體中的蛋白質轉錄基因,與五種不同的禾本科單子葉植物的葉綠體基因體(水稻、甘蔗、玉米、小麥和野稻; 所有p’s<0.001),明顯有較慢的演化速率。

     The complete nucleotide sequence of the chloroplast genome of the Taiwan moth orchid (Phalaenopsis aphrodite subsp. formosana) was determined. The circular double stranded DNA of 148,964 bp comprises a pair of inverted repeats of 25,732 bp, which is separated by a small single copy (SSC) and a large single copy (LSC) region of 11,543 and 85,957 bp, respectively. The genome contains 76 protein coding genes, 4 ribosomal RNA genes, 30 tRNA genes and 24 putative open reading frames (ORFs). Seventeen genes are intron-containing, including 6 tRNA and 11 protein coding genes. Unlike other chloroplast genomes of angiosperms, which have a complete set of genes for the 11 subunits of NADH dehydrogenase, the chloroplast genome of Phalaenopsis completely lacks the ndhA, ndhH and ndhF genes, in addition, its ndhE, ndhG and ndhI genes are truncated and probably non-functional. This loss results in the SSC region in Phalaenopsis being the shortest among known photosynthetic angiosperms. RNA editing is occurred to restore gene function of rpl2 but not ndhB, ndhC, ndhD, ndhJ and ndhK, and is hypothesized to be necessary for ycf1. Results of Tajima’s relative rate test indicates that the protein coding genes in Phalaenopsis evolved significantly more slowly than those any of the five different grasses (rice, sugarcane, maize, wheat and wild rice; all p’s<0.001) for which the complete chloroplast genome is known.

    目錄 第一章、前言...............................................1 第二章、文獻探討...........................................2 1. 植物體中葉綠體的演化與扮演的角色....................2 2. 定序完成的葉綠體基因體..............................3 3. 葉綠體基因體........................................5 3.1 葉綠體基因體的大小變異..........................6 3.1.1 低等植物與高等植物葉綠體基因體大小差異.....6 3.1.2 葉綠體基因所導致的葉綠體基因體大小差異.....7 3.1.3 導致葉綠體基因體大小差異的可能機制.........7 3.2 葉綠體基因體的結構變異..........................8 3.2.1 葉綠體基因體邊界變異.......................8 3.3 葉綠體基因體所含有的基因........................9 3.3.1 葉綠體rRNA和tRNA基因.....................9 3.3.2 葉綠體蛋白質轉錄基因......................10 3.3.2.1 葉綠體核醣體基因....................10 3.3.2.2 葉綠體光合作用基因..................11 3.3.2.3 葉綠體其他基因......................12 3.4 葉綠體基因內含子(intron).........................12 3.5 葉綠體基因體的基因變異.........................14 4. 葉綠體基因轉譯.....................................14 5. 葉綠體基因體遺傳特性...............................15 6. RNA編輯 (RNA editing)...............................16 6.1 葉綠體RNA編輯.................................16 6.2 葉綠體基因RNA編輯現象.........................17 7. 葉綠體基因體的應用.................................18 8. 蘭花生化代謝特性...................................19 9. 蝴蝶蘭特性.........................................20 10. 基因體解讀計畫策略................................21 10.1 基因體載體構築.................................21 10.2 全基因體震斷定序...............................22 11. 高等植物演化......................................23 11.1 利用葉綠體基因體進行高等植物演化分析...........23 第三章、材料與方法........................................25 1. 實驗材料...........................................25 2. 實驗方法...........................................25 2.1 蝴蝶蘭葉綠體純化................................25 2.1.1 蝴蝶蘭之來源及處理.........................25 2.1.2 製備緩衝溶液及純化管柱.....................25 2.1.3 初步純化葉綠體.............................26 2.1.4 管柱純化葉綠體.............................26 2.2 純化蝴蝶蘭葉綠體DNA...........................27 2.3 葉綠體DNA酵素切割.............................28 2.4蝴蝶蘭葉綠體Shotgun library之建立.................28 2.4.1 葉綠體DNA的片段化........................28 2.4.2 質體的構築.................................29 2.4.2.1 大量製備pBluescript載體...............29 2.4.2.2 限制酵素水解作用.....................29 2.4.2.3 平齊端接合作用.......................30 2.4.3 利用電穿孔法將DNA轉入細菌中..............30 2.4.4 質體純化與菌種保存.........................30 2.4.4.1 製備質體.............................30 2.4.4.2 菌種保存.............................31 2.4.5 DNA核酸序列定序..........................31 2.5 基因體序列分析..................................32 2.6 蝴蝶蘭RNA的製備...............................33 2.6.1蝴蝶蘭RNA的萃取..........................33 2.6.2 蝴蝶蘭RNA是否有DNA存在之檢測..........34 2.6.3 清除RNA中的DNA污染....................34 2.7 蝴蝶蘭葉綠體基因rpl2、ndhD RNA editing分析.......35 2.7.1反轉錄聚合酶連鎖反應 (RT-PCR)..............35 2.7.2質體接合反應...............................36 2.7.3 DNA序列多重排比..........................36 2.8 北方墨點反應....................................36 2.8.1 RNA分離..................................36 2.8.1.1 RNA膠體製備.........................36 2.8.1.2 RNA樣品與RNA marker製備............37 2.8.1.3 RNA電泳.............................37 2.8.2 RNA 探針(probe)製備........................37 2.8.2.1 載體製備.............................37 2.8.2.2 In vitro transcription.....................38 2.8.3 北方墨點轉漬分析..........................38 2.8.3.1 RNA轉漬.............................38 2.8.3.2 雜合溶液的製備.......................39 2.8.3.3 RNA雜合反應.........................39 2.8.3.4 呈色反應.............................40 2.9蛋白質序列多重排比(multiple alignment)..............41 2.10 rRNA與intron序列多重排比(multiple alignment)......42 2.11 取代率分析.....................................42 2.12 蝴蝶蘭演化地位分析.............................43 第四章、結果.............................................45 1. 台灣阿嬤蝴蝶蘭(TS-97)葉綠體基因體的萃取.............45 2.台灣阿嬤蝴蝶蘭(TS-97) Shot-gun library建立與基因體之定序.................................................45 3. 台灣阿嬤蝴蝶蘭(TS-97) 基因體之定序..................46 4. 台灣阿嬤蝴蝶蘭 (TS-97)葉綠體基因體分析..............46 4.1 蝴蝶蘭葉綠體基因體結構分析......................46 4.2 蝴蝶蘭葉綠體基因體基因註解......................47 4.3 蝴蝶蘭葉綠體基因體基因分類......................48 4.4 蝴蝶蘭葉綠體基因體蛋白質轉錄基因分析............49 4.5 蝴蝶蘭葉綠體密碼子使用(codon usage)...............52 5. 蝴蝶蘭葉綠體基因體RNA編輯的分析.................52 6. 蝴蝶蘭葉綠體基因體基因內含子(intron)分析.............54 7. 蝴蝶蘭葉綠體基因體邊界(junction)分析.................55 7.1 蝴蝶蘭葉綠體ndhA、ndhE、ndhF、ndhG、ndhH和ndhI基因分析......................................56 7.1.1 ndhA、ndhF和ndhH基因由葉綠體轉移至細胞核證據.....................................56 7.1.2 ndhE、ndhG和ndhI基因由葉綠體轉移至細胞核證據.....................................57 8. orf91表現分析........................................57 9. 蝴蝶蘭葉綠體基因體演化速率分析......................59 9.1蛋白質轉錄基因演化速率分析......................59 9.2 蛋白質轉錄基因synonymous (Ks) 和 nonsynonymous (Ka) 代率分析........................................59 9.3 rRNA和內含子(intron)演化速率分析................60 9.4 蝴蝶蘭演化地位分析.............................61 第五章、討論..............................................63 1. 蝴蝶蘭葉綠體ndh基因................................63 2. 葉綠體基因轉移至細胞核原因及機制....................66 3. RNA 編輯於葉綠體基因遺失所扮演角色................68 4. 蝴蝶蘭葉綠體基因體基因變異..........................69 5. 葉綠體基因體結構差異................................70 6. 葉綠體基因內含子(intron)比較分析......................71 7. 葉綠體基因體邊界(junction)變異........................71 8. 蝴蝶蘭葉綠體基因體應用..............................72 第六章、文獻參考..........................................74 圖目錄 圖一、蝴蝶蘭完整葉綠體與破裂葉綠體之梯度管柱分離..........85 圖二、蝴蝶蘭(Phalaenopsis aphrodite subsp. formosana)葉綠體基因體酵素切割圖譜.............................................86 圖三、蝴蝶蘭葉綠體基因體震斷圖............................87 圖四、Shot-gun clones的DNA分析............................88 圖五、 蝴蝶蘭(Phalaenopsis aphrodite subsp. formosana)葉綠體基因體圖譜.....................................................89 圖六、葉綠體ndhK基因DNA序列多重排比分析................91 圖七、葉綠體ndhC基因DNA序列多重排比分析...............92 圖八、葉綠體ndhJ基因DNA序列多重排比分析................93 圖九、葉綠體ndhD基因DNA序列多重排比分析...............95 圖十、葉綠體ndhE基因DNA序列多重排比分析...............96 圖十一、葉綠體ndhG基因DNA序列多重排比分析.............97 圖十二、葉綠體ndhI基因DNA序列多重排比分析..............98 圖十三、葉綠體ndhB基因DNA序列多重排比分析.............101 圖十四、葉綠體基因RNA編輯的分析........................103 圖十五、葉綠體rpl2基因RNA編輯的分析...................105 圖十六、葉綠體ndhD基因RNA編輯的分析..................107 圖十七、葉綠體基因體邊界分析.............................118 圖十八、葉綠體ndhA基因DNA序列多重排比分析.............110 圖十九、葉綠體ndhH基因DNA序列多重排比分析............112 圖二十、葉綠體ndhF基因DNA序列多重排比分析............114 圖二十一、葉綠體基因ndhA、ndhH及ndhF由葉綠體轉移至細胞核......................................................115 圖二十二、蝴蝶蘭與六種高等植物之ndhA基因部分DNA片段序列多重排比................................................116 圖二十三、蝴蝶蘭與六種高等植物之ndhA部分蛋白質序列多重排比......................................................117 圖二十四、蝴蝶蘭與六種高等植物之ndhH部分基因片段DNA序列多重排比................................................118 圖二十五、蝴蝶蘭與六種高等植物之ndhH基因部分蛋白質序列多重排比....................................................119 圖二十六、蝴蝶蘭與六種高等植物之ndhF部分基因片段DNA序列多重排比................................................121 圖二十七、蝴蝶蘭與六種高等植物之ndhF基因部分蛋白質序列多重排比....................................................122 圖二十八、葉綠體基因ndhE、ndhG及ndhI由葉綠體轉移至細胞核......................................................123 圖二十九、蝴蝶蘭與六種高等植物之ndhG部分基因片段DNA序列多重排比................................................124 圖三十、蝴蝶蘭與六種高等植物之ndhG基因部分蛋白質序列多重排比......................................................125 圖三十一、蝴蝶蘭與六種高等植物之ndhI部分基因片段DNA序列多重排比..................................................126 圖三十二、蝴蝶蘭與六種高等植物之ndhI基因部分蛋白質序列多重排比....................................................127 圖三十三 、蝴蝶蘭orf91的DNA序列比較....................128 圖三十四、蝴蝶蘭orf91的氨基酸序列比較....................129 圖三十五、利用RT-PCR偵測orf91 RNA transcripts 的存在......131 圖三十六、利用RNA blot偵測orf91 RNA transcript的存在......133 圖三十七、蝴蝶蘭與五種禾本科植物共有之65個蛋白質轉譯基因的核苷酸之同義取代(synonymous)與非同義取代(nonsynonymous)值......................................................134 圖三十八、蝴蝶蘭與五種禾本科植物所共有之四種rRNA基因與15個introns,其核苷酸transition (Ts)與transversion (Tv)之分析.....135 圖三十九、蝴蝶蘭與16種高等綠色植物之演化關係............136 表目錄 表一、NCBI已發表定序完成之31種高等綠色植物物種之分類地位......................................................137 表二、蝴蝶蘭葉綠體基因體所含有的基因.....................138 表三、蝴蝶蘭葉綠體基因體中含有intron的基因及其exon與intron的長度..................................................139 表四、蝴蝶蘭與其他10個物種葉綠體基因體之蛋白質序列相似性......................................................140 表五、蝴蝶蘭葉綠體基因體基因的codon usage分析............142 表六 、20種高等微管束植物的葉綠體基因ndhD、petL、psbL和rpl2的起始密碼序列..........................................143 表七、蝴蝶蘭葉綠體基因體與5種單子葉植物、2種雙子葉植物和2種裸子植物共有之 20個基因intron的長度...................144 表八、蝴蝶蘭葉綠體基因體與5種單子葉植物、2種雙子葉植物和2種裸子植物intron序列的相似性.............................145 表九、trnH和rps19基因位於被子植物葉綠體基因體的位置.....146 表十、蝴蝶蘭(Phalaenopsis aphrodite subsp. formosana)與四種單子葉植物和三種雙子葉植物的ndhA、ndhG、ndhH、ndhI和ndhF部分基因片段DNA序列之相似性.................................147 表十一、蝴蝶蘭(Phalaenopsis aphrodite subsp. formosana)與四種單子葉植物和三種雙子葉植物的ndhA、ndhG、ndhH、ndhI和ndhF基因片段的氨基酸序列之相似性................................148 附圖目錄 附圖一、Ndh複合體蛋白於葉綠體中所扮演可能角色...........149 附表目錄 附表一、本研究所使用到各引子序列........................150

    Asano, T., T. Tsudzuki, S. Takahashi, H. Shimada, and K. Kadowaki. 2004. Complete nucleotide sequence of the sugarcane (Saccharum officinarum) chloroplast genome: a comparative analysis of four monocot chloroplast genomes. DNA Res 11:93-99.

    Bendall, D. S. a. M., R. S. 1995. Cyclic photophosphorylation and electric transport. Biochim. Biophys. Acta 1229:23-38.

    Benne, S., Burg, J.V.D., Brakenoff, J.P.J., Sloof, P., Boom, J.H.V., Vanboom, J.H., Tromp, M.C. 1986. Major transcript of the frameshifted coxll gene from trypansome mitocondria contains four nucleotides that are not encoded in the DNA. Cell 46:819-826.

    Blanc, V., and N. O. Davidson. 2003. C-to-U RNA editing: mechanisms leading to genetic diversity. J Biol Chem 278:1395-1398.

    Boer, P. H., and M. W. Gray. 1988. Genes encoding a subunit of respiratory NADH dehydrogenase (ND1) and a reverse transcriptase-like protein (RTL) are linked to ribosomal RNA gene pieces in Chlamydomonas reinhardtii mitochondrial DNA. Embo J 7:3501-3508.

    Bouck, J. B., M. L. Metzker, and R. A. Gibbs. 2000. Shotgun sample sequence comparisons between mouse and human genomes. Nat Genet 25:31-33.

    Burger, G., D. Saint-Louis, M. W. Gray, and B. F. Lang. 1999. Complete sequence of the mitochondrial DNA of the red alga Porphyra purpurea. Cyanobacterial introns and shared ancestry of red and green algae. Plant Cell 11:1675-1694.

    Burrows, P. A., L. A. Sazanov, Z. Svab, P. Maliga, and P. J. Nixon. 1998. Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. Embo J 17:868-876.
    Cafasso, D., G. Pellegrino, A. Musacchio, A. Widmer, and S. Cozzolino. 2001. Characterization of a minisatellite repeat locus in the chloroplast genome of Orchis palustris (Orchidaceae). Curr Genet 39:394-398.

    Cai, X., A. L. Fuller, L. R. McDougald, and G. Zhu. 2003. Apicoplast genome of the coccidian Eimeria tenella. Gene 321:39-46.

    Calsa Junior, T., D. M. Carraro, M. R. Benatti, A. C. Barbosa, J. P. Kitajima, and H. Carrer. 2004. Structural features and transcript-editing analysis of sugarcane (Saccharum officinarum L.) chloroplast genome. Curr Genet 46:366-373.

    Chang, S. B., Chen, W. H., Chen, H. H., Fu, Y. M., and Lin Y.S . 2000. RFLP and inheritance patterns of chloroplast DNA in intergeneric hybrids of Phalaenopsis and Doritis. Botanical Bulletin of Academia Sinica 41, 219-223.

    Collins, F. S., M. Morgan, and A. Patrinos. 2003. The Human Genome Project: lessons from large-scale biology. Science 300:286-290.

    Collins, F. S., A. Patrinos, E. Jordan, A. Chakravarti, R. Gesteland, and L. Walters. 1998. New goals for the U.S. Human Genome Project: 1998-2003. Science 282:682-689.

    Corneille, S., K. Lutz, and P. Maliga. 2000. Conservation of RNA editing between rice and maize plastids: are most editing events dispensable? Mol Gen Genet 264:419-424.

    Corrieau, J. a. A. C. 1988. Rapid screening method to dectect potential biparental inheritance of plasti DNA and results for over 200 angiosperm species. Am. J. Bot. 75:1443-1458.

    Covello, P. S., and M. W. Gray. 1989. RNA editing in plant mitochondria. Nature 341:662-666.

    Daniell, H., and A. Dhingra. 2002. Multigene engineering: dawn of an exciting new era in biotechnology. Curr Opin Biotechnol 13:136-141.

    De Cosa, B., W. Moar, S. B. Lee, M. Miller, and H. Daniell. 2001.
    Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19:71-74.

    DeGray, G., K. Rajasekaran, F. Smith, J. Sanford, and H. Daniell. 2001. Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol 127:852-862.

    Deheij HT, L. H., Moeskops D-JM, Bovenberg WA, Bisanz C, Groot GSP. 1983. Chloroplast DNAs of Spinacia, Petunia and Spirodela have a similar gene organization. Curr Genet 7:1-6.

    Douglas, S. E., and S. L. Penny. 1999. The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Mol Evol 48:236-244.

    Downie, S. R., Olmstead, R.G., Zurawski, G., Soltis, D.E., Soltis, P.S., Watson, J.C. and Palmer J.D. 1991. Six independent losses of the chloroplast DNA rpl2 intron in dicotyledons: molecular and phylogenetic implications. Evolution 45:1245-1259.

    Fiebig, A., S. Stegemann, and R. Bock. 2004. Rapid evolution of RNA editing sites in a small non-essential plastid gene. Nucleic Acids Res 32:3615-3622.

    Fukuzawa, H., Kohchi, T., Shirai, H., Ohyama, K., Umesono, K., Inokuchi, H. & Ozeki, H. 1986. Coding sequences for chloroplast ribosomal protein S12 from the liverwort, Marchantia polymorpha, are separated far apart on the different DNA strands. FEBS Letters 198.

    Giese, K., A. R. Subramanian, I. M. Larrinua, and L. Bogorad. 1987. Nucleotide sequence, promoter analysis, and linkage mapping of the unusually organized operon encoding ribosomal proteins S7 and S12 in maize chloroplast. J Biol Chem 262:15251-15255.

    Glockner, G., A. Rosenthal, and K. Valentin. 2000. The structure and gene repertoire of an ancient red algal plastid genome. J Mol Evol 51:382-390.
    Gockel, G., and W. Hachtel. 2000. Complete gene map of the plastid genome of the nonphotosynthetic euglenoid flagellate Astasia longa. Protist 151:347-351.

    Goremykin, V. V., K. I. Hirsch-Ernst, S. Wolfl, and F. H. Hellwig. 2003. Analysis of the Amborella trichopoda chloroplast genome sequence suggests that amborella is not a basal angiosperm. Mol Biol Evol 20:1499-1505.

    Goremykin, V. V., K. I. Hirsch-Ernst, S. Wolfl, and F. H. Hellwig. 2004. The chloroplast genome of Nymphaea alba: whole-genome analyses and the problem of identifying the most basal angiosperm. Mol Biol Evol 21:1445-1454.

    Goremykin, V. V., Holland B.,Hirsch-Ernst K.I., and F. H. Hellwig. 2005. Analysis of Acorus calamus chloroplast genome and its phylogenetic implications. Mol Biol Evol. In press.

    Gott, J. M., Emeson, R.B. 2000. Functions and mechanisms of RNA editing. Annu. Rev. Genet. 34:499-531.

    Gruissem, W. 1989. Chloroplast gene expression: how plants turn their plastids on. Cell 56:161-170.

    Gunning, B. E. S., Steer, M. W. 1996. Plant Cell Biology: Structure and Function. Jones and Bartlett, Sudbury, MA.

    Haff, L. A., and L. Bogorad. 1976. Hybridization of maize chloroplast DNA with transfer ribonucleic acids. Biochemistry 15:4105-4109.

    Hallick, R. B., Hollingsworth, M. J., Nickoloff, J. A. 1984. Transfer RNA genes of Euglena gracilis chloroplast DNA. Plant Mol Biol 3:169-175.

    Hallick, R. B., L. Hong, R. G. Drager, M. R. Favreau, A. Monfort, B. Orsat, A. Spielmann, and E. Stutz. 1993. Complete sequence of Euglena gracilis chloroplast DNA. Nucleic Acids Res 21:3537-3544.

    Hiratsuka, J., H. Shimada, R. Whittier, T. Ishibashi, M. Sakamoto, M. Mori, C. Kondo, Y. Honji, C. R. Sun, B. Y. Meng, and et al. 1989. The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217:185-194.

    Hirose, T., T. Kusumegi, T. Tsudzuki, and M. Sugiura. 1999. RNA editing sites in tobacco chloroplast transcripts: editing as a possible regulator of chloroplast RNA polymerase activity. Mol Gen Genet 262:462-467.

    Hoch, B., R. M. Maier, K. Appel, G. L. Igloi, and H. Kossel. 1991. Editing of a chloroplast mRNA by creation of an initiation codon. Nature 353:178-180.

    Hupfer, H., M. Swiatek, S. Hornung, R. G. Herrmann, R. M. Maier, W. L. Chiu, and B. Sears. 2000. Complete nucleotide sequence of the Oenothera elata plastid chromosome, representing plastome I of the five distinguishable euoenothera plastomes. Mol Gen Genet 263:581-585.

    Kanno, A. a. A. H. 1993. A transcription map of the chloroplast genome of a legume, Lotus japonicus. Curr Genet 23:166-174.

    Karcher, D., and R. Bock. 2002. The amino acid sequence of a plastid protein is developmentally regulated by RNA editing. J Biol Chem 277:5570-5574.

    Kato, T., T. Kaneko, S. Sato, Y. Nakamura, and S. Tabata. 2000. Complete structure of the chloroplast genome of a legume, Lotus japonicus. DNA Res 7:323-330.

    Kim, K. J., and H. L. Lee. 2004. Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res 11:247-261.

    Kirk, J. T. O., Tileny-Bassett, R.A.E. 1978. The Plastids: Their Chemistry, Structure, Growth and Inheritance. Elsevier / North Holland Biomedical Press, Amsterdam.
    Kohler, S., C. F. Delwiche, P. W. Denny, L. G. Tilney, P. Webster, R. J. Wilson, J. D. Palmer, and D. S. Roos. 1997. A plastid of probable green algal origin in Apicomplexan parasites. Science 275:1485-1489.

    Koller, B., H. Fromm, E. Galun, and M. Edelman. 1987. Evidence for in vivo trans splicing of pre-mRNAs in tobacco chloroplasts. Cell 48:111-119.

    Kugita, M., A. Kaneko, Y. Yamamoto, Y. Takeya, T. Matsumoto, and K. Yoshinaga. 2003. The complete nucleotide sequence of the hornwort (Anthoceros formosae) chloroplast genome: insight into the earliest land plants. Nucleic Acids Res 31:716-721.

    Kugita, M., Y. Yamamoto, T. Fujikawa, T. Matsumoto, and K. Yoshinaga. 2003. RNA editing in hornwort chloroplasts makes more than half the genes functional. Nucleic Acids Res 31:2417-2423.

    Lemieux, C., C. Otis, and M. Turmel. 2000. Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution. Nature 403:649-652.

    Lilly, J. W., M. J. Havey, S. A. Jackson, and J. Jiang. 2001. Cytogenomic analyses reveal the structural plasticity of the chloroplast genome in higher plants. Plant Cell 13:245-254.

    Linne von Berg, K. H., and K. V. Kowallik. 1992. Structural organization of the chloroplast genome of the chromophytic alga Vaucheria bursata. Plant Mol Biol 18:83-95.

    Lister, D. L., J. M. Bateman, S. Purton, and C. J. Howe. 2003. DNA transfer from chloroplast to nucleus is much rarer in Chlamydomonas than in tobacco. Gene 316:33-38.

    Liu, Y., Q. Zhang, Y. Hu, and Sodmergen. 2004. Heterogeneous pollen in Chlorophytum comosum, a species with a unique mode of plastid inheritance intermediate between the maternal and biparental modes. Plant Physiol 135:193-200.

    Lowe, T. M., and S. R. Eddy. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955-964.

    Maas, S., A. Rich, and K. Nishikura. 2003. A-to-I RNA editing: recent news and residual mysteries. J Biol Chem 278:1391-1394.

    Maier, R. M., K. Neckermann, G. L. Igloi, and H. Kossel. 1995. Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol 251:614-628.

    Martin, W., B. Stoebe, V. Goremykin, S. Hapsmann, M. Hasegawa, and K. V. Kowallik. 1998. Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393:162-165.

    Matsumoto, T., Wu, J., Baba, T., Katayose, Y., Yamamoto, K., Sakata, K., Yano, M., Sasaki, T. 2001. Rice genomics: current status of genome sequencing. Novartis Found Symp 236:28-41.

    Maul, J. E., J. W. Lilly, L. Cui, C. W. dePamphilis, W. Miller, E. H. Harris, and D. B. Stern. 2002. The Chlamydomonas reinhardtii plastid chromosome: islands of genes in a sea of repeats. Plant Cell 14:2659-2679.

    McPherson, J. D.M. Marra, L. Hillier et al. (110 co-authors). 2001. A physical map of the human genome. Nature 409:934-941.

    Meinke, D. W., L. K. Meinke, T. C. Showalter, A. M. Schissel, L. A. Mueller, and I. Tzafrir. 2003. A sequence-based map of Arabidopsis genes with mutant phenotypes. Plant Physiol 131:409-418.

    Michel, F., and B. Dujon. 1983. Conservation of RNA secondary structures in two intron families including mitochondrial-, chloroplast- and nuclear-encoded members. Embo J 2:33-38.

    Miyamoto, T., J. Obokata, and M. Sugiura. 2004. A site-specific factor interacts directly with its cognate RNA editing site in chloroplast transcripts. Proc Natl Acad Sci U S A 101:48-52.

    Mogensen, H. L. 1996. The hows and whys of cytoplasmic inheritance in seed plants. Am. J. Bot. 83.

    Neyland, R., and L. E. Urbatsch. 1996. The ndhF chloroplast gene detected in all vascular plant divisions. Planta 200:273-277.

    Nigg, E. A. 1997. Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature 386:779-787.

    Niiler, E. 2000. Monsanto releases rice data to academia. Nat Biotechnol 18:484.

    Ohta, N., M. Matsuzaki, O. Misumi, S. Y. Miyagishima, H. Nozaki, K. Tanaka, I. T. Shin, Y. Kohara, and T. Kuroiwa. 2003. Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae. DNA Res 10:67-77.

    Ohyama, K. e. a. 1986. Chloroplast gene organsiation deduced from complete sequence analysis of liverwort Marchantia polymorpha chloroplast DNA. Nature 322:572-574.

    Palmer JD, J. R., Michaels HJ, Chase MW, Manhart JR. 1988. Chloroplst DNA variation and plant phylogeny. Ann Missouri Bot Garden 75:1180-1218.

    Plant A. L., G. J. C. 1988. Introns in chloroplast protein-coding genes of land plants. Photosynth Res 16:23-39.

    Reed, M. L., N. M. Peeters, and M. R. Hanson. 2001. A single alteration 20 nt 5' to an editing target inhibits chloroplast RNA editing in vivo. Nucleic Acids Res 29:1507-1513.

    Pombert, J. F., C. Otis, C. Lemieux, and M. Turmel. 2005. The Chloroplast Genome Sequence of the Green Alga Pseudendoclonium akinetum (Ulvophyceae) Reveals Unusual Structural Features and New Insights into the Branching Order of Chlorophyte Lineages. Mol Biol Evol. 22:1903-1918.

    Reith, M. E. a. J. M. 1995. Complete nucleotide sequence of the Porphyra Purpurea chloroplast genome. Plant Mol. Biol. Rep. 13:333-335.

    Rochaix, J. D., and P. Malnoe. 1978. Anatomy of the chloroplast ribosomal DNA of Chlamydomonas reinhardii. Cell 15:661-670.

    Sato, S., Y. Nakamura, T. Kaneko, E. Asamizu, and S. Tabata. 1999. Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res 6:283-290.

    Schmitz-Linneweber, C., R. M. Maier, J. P. Alcaraz, A. Cottet, R. G. Herrmann, and R. Mache. 2001. The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization. Plant Mol Biol 45:307-315.

    Schmitz-Linneweber, C., R. Regel, T. G. Du, H. Hupfer, R. G. Herrmann, and R. M. Maier. 2002. The plastid chromosome of Atropa belladonna and its comparison with that of Nicotiana tabacum: the role of RNA editing in generating divergence in the process of plant speciation. Mol Biol Evol 19:1602-1612.

    Shahid Masood, M., T. Nishikawa, S. Fukuoka, P. K. Njenga, T. Tsudzuki, and K. Kadowaki. 2004. The complete nucleotide sequence of wild rice (Oryza nivara) chloroplast genome: first genome wide comparative sequence analysis of wild and cultivated rice. Gene 340:133-139.

    Shimada, H., and M. Sugiura. 1991. Fine structural features of the chloroplast genome: comparison of the sequenced chloroplast genomes. Nucleic Acids Res 19:983-995.

    Steinhauser, S., S. Beckert, I. Capesius, O. Malek, and V. Knoop. 1999. Plant mitochondrial RNA editing. J Mol Evol 48:303-312.

    Sugiura, C., Y. Kobayashi, S. Aoki, C. Sugita, and M. Sugita. 2003. Complete chloroplast DNA sequence of the moss Physcomitrella patens: evidence for the loss and relocation of rpoA from the chloroplast to the nucleus. Nucleic Acids Res 31:5324-5331.

    Sugiura, M. 1992. The chloroplast genome. Plant Mol Biol 19:149-168.

    Torazawa, K., N. Hayashida, J. Obokata, K. Shinozaki, and M. Sugiura. 1986. The 5' part of the gene for ribosomal protein S12 is located 30 kbp downstream from its 3' part in tobacco chloroplast genome. Nucleic Acids Res 14:3143.

    Tsudzuki, J., K. Nakashima, T. Tsudzuki, J. Hiratsuka, M. Shibata, T. Wakasugi, and M. Sugiura. 1992. Chloroplast DNA of black pine retains a residual inverted repeat lacking rRNA genes: nucleotide sequences of trnQ, trnK, psbA, trnI and trnH and the absence of rps16. Mol Gen Genet 232:206-214.

    Turmel, M., C. Otis, and C. Lemieux. 1999. The complete chloroplast DNA sequence of the green alga Nephroselmis olivacea: insights into the architecture of ancestral chloroplast genomes. Proc Natl Acad Sci U S A 96:10248-10253.

    Turmel, M., C. Otis, and C. Lemieux. 2002. The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants. Proc Natl Acad Sci U S A 99:11275-11280.

    Venter, J., C.M. D. Adams, E. W. Myers et al. (270 co-authors). 2001. The sequence of the human genome. Science 291:1304-1351.

    Wakasugi, T., T. Nagai, M. Kapoor, M. Sugita, M. Ito, S. Ito, J. Tsudzuki, K. Nakashima, T. Tsudzuki, Y. Suzuki, A. Hamada, T. Ohta, A. Inamura, K. Yoshinaga, and M. Sugiura. 1997. Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: the existence of genes possibly involved in chloroplast division. Proc Natl Acad Sci U S A 94:5967-5972.

    Wakasugi, T., J. Tsudzuki, S. Ito, K. Nakashima, T. Tsudzuki, and M. Sugiura. 1994. Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc Natl Acad Sci U S A 91:9794-9798.

    Wolf, P. G., C. A. Rowe, R. B. Sinclair, and M. Hasebe. 2003. Complete nucleotide sequence of the chloroplast genome from a leptosporangiate fern, Adiantum capillus-veneris L. DNA Res 10:59-65.

    Wolfe, K. H., W. H. Li, and P. M. Sharp. 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci U S A 84:9054-9058.

    Wolfe, K. H., C. W. Morden, and J. D. Palmer. 1992. Small single-copy region of plastid DNA in the non-photosynthetic angiosperm Epifagus virginiana contains only two genes. Differences among dicots, monocots and bryophytes in gene organization at a non-bioenergetic locus. J Mol Biol 223:95-104.

    You, S., C. Liau, et al. 2003. Sweet pepper Ferredoxin-like Protein(pflp) Gene as a Novel Selection Marker for Orchid transformation. Planta 217:61-65.

    Zhang, Q., Liy, Y., Sodmergen. 2003. Examination of cytoplasmic DNA in male reproductive cells to determine the potential for cytoplasmic inheritance in 295 angiosperm species. Plant cell Physiol. 44:941-951.

    Zuker, M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406-3415.

    下載圖示 校內:立即公開
    校外:2005-08-29公開
    QR CODE