簡易檢索 / 詳目顯示

研究生: 賴彥頴
Lai, Yen-Ying
論文名稱: 本土嗜溫性微藻Desmodesmus sp. 之藻油生產最適化
Optimizing lipid production with an indigenous thermo-tolerant microalga Desmodesmus sp.
指導教授: 張嘉修
Chang, Jo-Shu
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 116
中文關鍵詞: 微藻鏈帶藻生質柴油藻油自動沉降光照強度溫度氮源反應曲面法批次批次饋料半連續式戶外培養
外文關鍵詞: microalgae, Desmodesmus sp., biodiesel, lipid quality, auto-sedimentation, light intensity, temperature, nitrogen source, response surface methodology, batch, fed-batch, semi-continuous, outdoor cultivation
相關次數: 點閱:139下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 工業發展和化石燃料的過度使用在現今已造成了一些嚴重的問題,例如環境污染、氣候變遷、甚至是物種滅絕。因此,使用替代能源(如生質能)被提出來作為解決此問題的方案之一。在眾多生質能的選項中,由於微藻具高生長速率、高油脂含量、可在非耕地培養等優點,近年來利用微藻產生質柴油日益受到重視。本研究首先建立篩選高效能油脂生產藻株之標準方法,針對藻株之油脂生產表現、油脂品質以及自動沉降能力進行評估,基於這些標準由台灣西南方海域分離之四株本土耐熱性微藻(Desmodesmus sp. F2, F32, F44, F51)中挑選出適合生產生質柴油之優勢藻株。由於Desmodesmus sp. F2在相同之培養條件下(光照強度100 μmol m-2 s-1、溫度35 oC)具有較高的油脂含量(52.86 % w/w)、油脂生產速率(113 mg L-1 d-1)、適當的脂肪酸成份分布以及較佳的自動沉降能力(61.97 % hour-1),因此被選為優勢藻株來進行一系列的微藻油脂生產測試。
    本研究探討不同的環境因子(光照強度、溫度、氮源種類、氮源濃度和缺氮時間)對Desmodesmus sp. F2之生長或油脂累積的影響,並結合反應曲面法(Response surface methodology, RSM),取得以批次程序進行藻油生產之最適化條件。結果顯示,在最適化條件下 (光照強度700 μmol m-2 s-1、溫度35 oC、6.6 mM氮源濃度、缺氮六天) Desmodesmus sp. F2之最大的藻油生產速率約為263 mg L-1 d-1,而油脂含量可達67.57 % w/w。此藻油生產速率是RSM最適化之前的兩倍。
    最後,本研究以不同的培養策略(批次饋料及半連續式培養系統)提升藻油生產之表現。在批次饋料(Fed-batch)培養系統中測試不同的進料時間間隔(缺氮2, 4, 6天),最佳的結果出現在缺氮6天的批次饋料系統中。雖然其油脂含量(49.16 % w/w)和油脂產率(213 mg L-1 d-1)較低,但其藻體濃度可達9.33 g L-1,為批次(Batch)培養系統的三倍以上。此外,本研究亦進行不同藻液和培養基置換比例的在半連續式(Semi-continuous)操作,以半批次培養,在90 %之置換比例下,可達最大的油脂生產速率(302 mg L-1 d-1),優於批次培養系統之結果,而其油脂含量則為45.57 % w/w。因此,培養系統的選擇必須根據不同的需求作決定。此外,本研究亦進行Desmodesmus sp. F2之50 L戶外批次培養測試。在高溫高光強度下,其藻體產率、油脂含量及油脂生產速率分別為 84 mg L-1 d-1, 33.0 % w/w, and 22 mg L-1 d-1。這些結果顯示利用D. sp. F2進行大規模藻油生產之可行性。

    Nowadays, rapid industrial development and the overuse of fossil fuels have caused some severe problems, such as environmental pollutions, climate change, and even the species extinctions. Therefore, using alternative energy (such as biomass energy) has been recognized as one of the strategies to solve these problems. Among the options of biomass energy, microalgae-based biodiesel is consider a promising one since microalgae have high growth rate, high lipid content, can be cultivated on non-arable. In this study, standard criteria (i.e., oil/lipid production performance, lipid quality, and auto-sedimentation ability) were established as a platform technology for screening potential microalgal strains suitable for the use as the oil feedstock for biodiesel production. Based on the aforementioned criteria, the strain with the highest potential as microalgal oil producer was selected from four indigenous thermo-tolerant Desmodesmus sp. isolates (i.e., F2, F32, F44, and F51) obtained from southern coast of Taiwan. Under the same cultivation conditions (light intensity, 100 μmol m-2 s-1; temperature, 35 oC), Desmodesmus sp. F2 appeared to have higher lipid content (52.86 % w/w), higher lipid productivity (113 mg L-1 d-1), proper fatty acid profile, and great auto-sedimentation ability (61.97 % hour-1). Therefore, the F2 strain was chosen as the target strain for further oil production studies.
    Next, the effects of environmental factors (i.e., light intensity, temperature, nitrogen source, nitrogen concentration, and duration of nitrogen depletion) on cell growth and lipid accumulation of Desmodesmus sp. F2 were examined. Response surface methodology (i.e., RSM) was used to determine the optimal conditions for batch microalgal oil production. Under the optimal conditions (i.e., light intensity, 700 μmol m-2 s-1; temperature, 35 oC; nitrogen concentration, 6.6 mM; 6-day nitrogen depletion), the maximum lipid productivity and lipid content was about 263 mg L-1 d-1 and 67.57 % w/w, respectively. This lipid productivity is 2 folds higher than that obtained from original conditions before the RSM optimization.
    Different cultivation strategies (i.e., fed-batch and semi-continuous cultivation systems) were also applied to improve the microalgal oil production performance. For fed-batch cultivation system, different feeding intervals (i.e., 2, 4, and 6-day nitrogen depletion) were explored. The best results were obtained with 6-day nitrogen depletion feeding, giving a final biomass concentration of 9.33 g L-1, which is 3-fold higher than that obtained in batch cultivation system. Nevertheless, the lipid content (49.16 % w/w) and lipid productivity (213 mg L-1 d-1) were lower than those from batch cultivation. On the other hand, semi-continuous cultivation system was conducted using different replacement ratio of culture broth and fresh medium. Using the semi-batch operation with 90 % replacement ratio, the maximum lipid productivity was 302 mg L-1 d-1, which is higher than using batch cultivation system, whereas the lipid content (45.57%(w/w)) was lower. Thus, the selection of cultivation systems has to depend on different requirements. Moreover, the 50 L outdoor batch cultivation of Desmodesmus sp. F2 was also investigated. The results show that the biomass productivity, lipid content, and lipid productivity was 84 mg L-1 d-1, 33.0 % w/w, and 22 mg L-1 d-1, respectively under the light intensity and high temperature in outdoor environment. The results discussed above suggest that D. sp. F2 seems to be a feasible candidate of oil producer for large-scale biodiesel production.

    摘要 I Abstract III Acknowledgment VI Contents VIII Lists of tables XII Lists of figures XIV Chapter 1 Introduction 1 1-1 Background 1 1-2 Motivation and purpose 2 1-3 Research scheme of the thesis 4 Chapter 2 Literature review 6 2-1 Biodiesel 6 2-1-1 Introduction of biodiesel 6 2-1-2 Biodiesel production 7 2-2 Algae 9 2-2-1 Macroalgae 9 2-2-2 Microalgae 10 2-3 Introductions of cell growth and lipid formation of microalgae 11 2-3-1 Mechanism of photosynthesis 11 2-3-2 Mechanism of lipid formation 13 2-3-3 Lipid production from microalgae 17 2-4 Factors affecting the cell growth or lipid accumulation of microalgae 18 2-4-1 Light intensity 18 2-4-2 Temperature 19 2-4-3 Medium composition 20 2-4-4 Stress conditions 23 2-4-5 Cultivation systems 24 Chapter 3 Materials and methods 27 3-1 Chemicals and materials 27 3-1-1 Chemicals used for Desmodesmus sp. strains cultivation 27 3-1-2 Chemicals used for lipid analysis 28 3-1-3 Others 28 3-2 Equipments 28 3-3 Isolation and identification of Desmodesmus sp. strains 30 3-4 Composition of D. sp. culture medium 32 3-5 Operation of cultivation system 33 3-5-1 Batch operation with indoor tubular-typed photobioreactor 33 3-5-2 Fed-batch operation with indoor tubular-typed photobioreactor 34 3-5-3 Semi-continuous operation with indoor tubular-typed photobioreactor 35 3-5-4 Batch operation with outdoor tubular-typed photobioreactor 36 3-6 Test tube auto-sedimentation experiment 37 3-7 Statistical experimental design methodology 38 3-7-1 Experimental design using light intensity and temperature as design factors and biomass productivity as response 38 3-7-2 Experimental design using nitrogen concentration and duration of nitrogen depletion as design factors and lipid productivity as response 39 3-8 The analytical methods 41 3-8-1 Measurement of biomass concentration 41 3-8-2 Measurement of residual nitrate concentration 42 3-8-3 Determination of lipid content and fatty acid profile 43 3-8-4 Determination of carbohydrate content 45 3-8-5 Determination of protein content 46 3-9 Data analysis 47 3-9-1 Definition of specific growth rate 47 3-9-2 Definition of overall biomass and lipid productivity 47 3-9-3 Calculation of microalgal settling efficiency and maximum auto-sedimentation rate 47 Chapter 4 Results and discussions 49 4-1 Screening of promising oil producer from four indigenous microalga Desmodesmus sp. isolates 49 4-1-1 Identification of biomass production, lipid content, and lipid productivity of four Desmodesmus sp. isolates 50 4-1-2 Effect of duration of nitrogen depletion on lipid profile of the four D. sp. isolates 53 4-1-3 Performances of auto-sedimentation of four D. sp. isolates 57 4-1-4 Summary 59 4-2 Improving lipid production performance for the target strain of Desmodesmus sp. F2 60 4-2-1 Effects of culture conditions on cell growth and lipid accumulation 60 4-2-2 RSM of light intensity and temperature on maximum biomass productivity 74 4-2-3 RSM of nitrate concentration and nitrogen depletion time on overall lipid productivity 76 4-2-4 Summary 80 4-3 The effect of photobioreactor operation strategy on oil production of Desmodesmus sp. F2 and outdoor cultivation tests 81 4-3-1 Fed-batch cultivation system 82 4-3-2 Semi-continuous cultivation system 87 4-3-3 50 liter outdoor batch cultivation system 89 4-3-4 Summary 93 Chapter 5 Conclusions 94 Reference 97 Appendix 113 Appendix A. European Biodiesel Standard-EN 14214 113 Appendix B. American Biodiesel Standard-ASTM D6751 114 Appendix C. Taiwan Biodiesel Standard-CNS 15072 115 Appendix D. Properties of different kinds of fatty acids (Knothe, 2009) 116

    Ahmad, A.L., Yasin, N.H.M., Derek, C.J.C., Lim, J.K. 2011. Microalgae as a sustainable energy source for biodiesel production: A review. Renewable & Sustainable Energy Reviews, 15(1), 584-593.
    Al-Qasmi, M., Member, N.R., IAENG, S.T., Al-Rajhi, S., Al-Barwani, T. 2012. A Review of Effect of Light on Microalgae Growth. in: Proceedings of the World Congress on Engineering. ISBN 978-988-19251-3-8
    Atabani, A.E., Silitonga, A.S., Badruddin, I.A., Mahlia, T.M.I., Masjuki, H.H., Mekhilef, S. 2012. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable & Sustainable Energy Reviews, 16(4), 2070-2093.
    Azcan, N., Danisman, A. 2008. Microwave assisted transesterification of rapeseed oil. Fuel, 87(10-11), 1781-1788.
    Barsanti, L., Gualtieri, P. 2006. Algae: anatomy, biochemistry, and biotechnology. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300.
    Berges, J.A., Franklin, D.J., Harrison, P.J. 2001. Evolution of an artificial seawater medium: Improvements in enriched seawater, artificial water over the last two decades. Journal of Phycology, 37(6), 1138-1145.
    Brennan, L., Owende, P. 2010. Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable & Sustainable Energy Reviews, 14(2), 557-577.

    Britto, D.T., Siddiqi, M.Y., Glass, A.D.M., Kronzucker, H.J. 2001. Futile transmembrane NH4+ cycling: A cellular hypothesis to explain ammonium toxicity in plants. Proceedings of the National Academy of Sciences of the United States of America, 98(7), 4255-4258.
    Carvalho, A.P., Pontes, I., Gaspar, H., Malcata, F.X. 2006. Metabolic relationships between macro- and micronutrients, and the eicosapentaenoic acid and docosahexaenoic acid contents of Pavlova lutheri. Enzyme and Microbial Technology, 38(3-4), 358-366.
    Carvalho, A.P., Silva, S.O., Baptista, J.M., Malcata, F.X. 2011. Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Applied Microbiology and Biotechnology, 89(5), 1275-1288.
    Cheirsilp, B., Torpee, S. 2012. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: Effect of light intensity, glucose concentration and fed-batch cultivation. Bioresource Technology, 110, 510-516.
    Chen, C.-Y., Yeh, K.-L., Aisyah, R., Lee, D.-J., Chang, J.-S. 2011. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology, 102(1), 71-81.
    Cheng, Y.-L., Juang, Y.-C., Liao, G.-Y., Tsai, P.-W., Ho, S.-H., Yeh, K.-L., Chen, C.-Y., Chang, J.-S., Liu, J.-C., Chen, W.-M., Lee, D.-J. 2011. Harvesting of Scenedesmus obliquus FSP-3 using dispersed ozone flotation. Bioresource Technology, 102(1), 82-87.
    Cherubini, F. 2010. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management, 51(7), 1412-1421.
    Chisti, Y. 2007. Biodiesel from microalgae. Biotechnology Advances, 25(3), 294-306.
    Chiu, S.Y., Kao, C.Y., Tsai, M.T., Ong, S.C., Chen, C.H., Lin, C.S. 2009. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technology, 100(2), 833-838.
    Collos, Y., Mornet, F., Sciandra, A., Waser, N., Larson, A., Harrison, P.J. 1999. An optical method for the rapid measurement of micromolar concentrations of nitrate in marine phytoplankton cultures. Journal of Applied Phycology, 11(2), 179-184.
    Converti, A., Casazza, A.A., Ortiz, E.Y., Perego, P., Del Borghi, M. 2009. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing, 48(6), 1146-1151.
    Crawford, N.M., Glass, A.D.M. 1998. Molecular and physiological aspects of nitrate uptake in plants. Trends in Plant Science, 3(10), 389-395.
    Daroch, M., Geng, S., Wang, G.Y. 2013. Recent advances in liquid biofuel production from algal feedstocks. Applied Energy, 102, 1371-1381.
    Deshmane, V.G., Gogate, P.R., Pandit, A.B. 2009. Ultrasound-Assisted Synthesis of Biodiesel from Palm Fatty Acid Distillate. Industrial & Engineering Chemistry Research, 48(17), 7923-7927.
    Dorado, M.P., Ballesteros, E., Arnal, J.M., Gomez, J., Lopez, F.J. 2003. Exhaust emissions from a Diesel engine fueled with transesterified waste olive oil. Fuel, 82(11), 1311-1315.

    Feng, D.N., Chen, Z.A., Xue, S., Zhang, W. 2011. Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Bioresource Technology, 102(12), 6710-6716.
    Fernando, S., Adhikari, S., Chandrapal, C., Murali, N. 2006. Biorefineries: Current status, challenges, and future direction. Energy & Fuels, 20(4), 1727-1737.
    Gibbins, J., Chalmers, H. 2008. Carbon capture and storage. Energy Policy, 36(12), 4317-4322.
    Gonzalez-Delgado, A.D., Kafarov, V. 2011. Microalgae Based Biorefinery: Issues to Consider. Ct&F-Ciencia Tecnologia y Futuro, 4(4), 5-21.
    Gouveia, L., Oliveira, A.C. 2009. Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology & Biotechnology, 36(2), 269-274.
    Guarente, L. 2011. The Logic Linking Protein Acetylation and Metabolism. Cell Metabolism, 14(2), 151-153.
    Hall, D.O. 1991. Biomass Energy. Energy Policy, 19(8), 711-737.
    Harwood, J.L. 1988. Fatty-Acid Metabolism. Annual Review of Plant Physiology and Plant Molecular Biology, 39, 101-138.
    Ho, S.-H., Chen, C.-Y., Chang, J.-S. 2012a. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology(113), 244-252.
    Ho, S.-H., Kondo, A., Hasunuma, T., Chang, J.-S. 2013a. Engineering strategies for improving the CO2 fixation and carbohydrate productivity of Scenedesmus obliquus CNW-N used for bioethanol fermentation. Bioresource Technology, 143, 163-171
    Ho, S.H., Chen, W.M., Chang, J.S. 2010. Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresource Technology, 101(22), 8725-8730.
    Ho, S.H., Li, P.J., Liu, C.C., Chang, J.S. 2013b. Bioprocess development on microalgae-based CO2 fixation and bioethanol production using Scenedesmus obliquus CNW-N. Bioresource Technology. Http://dx.doi.org/10.1016/j.biortech.2013.02.119
    Ho, S.H., Lu, W.B., Chang, J.S. 2012b. Photobioreactor strategies for improving the CO2 fixation efficiency of indigenous Scenedesmus obliquus CNW-N: Statistical optimization of CO2 feeding, illumination, and operation mode. Bioresource Technology, 105, 106-113.
    Horton, H.R., Moran, L.A., Ochs, R.S., Rawn, J.D., Scrimgeour, K.G. 2002. Principles of Biochemistry, 3rd ed. Upper Saddle River NJ: Prentice Hall, 469-473.
    Hsieh, C.H., Wu, W.T. 2009. Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresource Technology, 100(17), 3921-3926.
    Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., Darzins, A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant Journal, 54(4), 621-639.
    Huang, G.H., Chen, F., Wei, D., Zhang, X.W., Chen, G. 2010. Biodiesel production by microalgal biotechnology. Applied Energy, 87(1), 38-46.
    Imahara, H., Minami, E., Saka, S. 2006. Thermodynamic study on cloud point of biodiesel with its fatty acid composition. Fuel, 85(12-13), 1666-1670.

    James, G.O., Hocart, C.H., Hillier, W., Price, G.D., Djordjevic, M.A. 2013. Temperature modulation of fatty acid profiles for biofuel production in nitrogen deprived Chlamydomonas reinhardtii. Bioresource Technology, 127, 441-447.
    Jeong, H., Lee, J., Cha, M. 2013. Energy efficient growth control of microalgae using photobiological methods. Renewable Energy, 54, 161-165.
    John, R.P., Anisha, G.S., Nampoothiri, K.M., Pandey, A. 2011. Micro and macroalgal biomass: A renewable source for bioethanol. Bioresource Technology, 102(1), 186-193.
    Kallqvist, T., Svenson, A. 2003. Assessment of ammonia toxicity in tests with the microalga, Nephroselmis pyriformis, Chlorophyta. Water Research, 37(3), 477-484.
    Kerchev, P.I., Fenton, B., Foyer, C.H., Hancock, R.D. 2012. Plant responses to insect herbivory: interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways. Plant Cell and Environment, 35(2), 441-453.
    Khozin-Goldberg, I., Cohen, Z. 2006. The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry, 67(7), 696-701.
    Knothe, G. 2005. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Processing Technology, 86(10), 1059-1070.
    Knothe, G. 2009. Improving biodiesel fuel properties by modifying fatty ester composition. Energy & Environmental Science, 2(7), 759-766.

    Kunjapur, A.M., Eldridge, R.B. 2010. Photobioreactor Design for Commercial Biofuel Production from Microalgae. Industrial & Engineering Chemistry Research, 49(8), 3516-3526.
    Lacis, A.A., Schmidt, G.A., Rind, D., Ruedy, R.A. 2010. Atmospheric CO2: Principal Control Knob Governing Earth's Temperature. Science, 330(6002), 356-359.
    Lam, M.K., Lee, K.T. 2012. Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnology Advances, 30(3), 673-690.
    Li, C.L., Yang, H.L., Li, Y.J., Cheng, L.P., Zhang, M., Zhang, L., Wang, W. 2013. Novel bioconversions of municipal effluent and CO2 into protein riched Chlorella vulgaris biomass. Bioresource Technology, 132, 171-177.
    Li, X., Hu, H.Y., Zhang, Y.P. 2011. Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Bioresource Technology, 102(3), 3098-3102.
    Li, Y., Han, D., Hu, G., Dauvillee, D., Sommerfeld, M., Ball, S., Hu, Q. 2010. Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metabolic Engineering, 12(4), 387-91.
    Li, Y.Q., Horsman, M., Wang, B., Wu, N., Lan, C.Q. 2008. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied Microbiology and Biotechnology, 81(4), 629-636.
    Liu, J., Huang, J.C., Fan, K.W., Jiang, Y., Zhong, Y.J., Sun, Z., Chen, F. 2010. Production potential of Chlorella zofingienesis as a feedstock for biodiesel. Bioresource Technology, 101(22), 8658-8663.

    Liu, J.H., Yuan, C., Hu, G.R., Li, F.L. 2012. Effects of Light Intensity on the Growth and Lipid Accumulation of Microalga Scenedesmus sp. 11-1 Under Nitrogen Limitation. Applied Biochemistry and Biotechnology, 166(8), 2127-2137.
    Liu, Z.Y., Wang, G.C., Zhou, B.C. 2008. Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technology, 99(11), 4717-4722.
    Lopez, C.V.G., Fernandez, F.G.A., Sevilla, J.M.F., Fernandez, J.F.S., Garcia, M.C.C., Grima, E.M. 2009. Utilization of the cyanobacteria Anabaena sp. ATCC 33047 in CO2 removal processes. Bioresource Technology, 100(23), 5904-5910.
    Ma, F.R., Hanna, M.A. 1999. Biodiesel production: a review. Bioresource Technology, 70(1), 1-15.
    Mata, T.M., Martins, A.A., Caetano, N.S. 2010. Microalgae for biodiesel production and other applications: A review. Renewable & Sustainable Energy Reviews, 14(1), 217-232.
    Meher, L.C., Sagar, D.V., Naik, S.N. 2006. Technical aspects of biodiesel production by transesterification - a review. Renewable & Sustainable Energy Reviews, 10(3), 248-268.
    Meng, X., Yang, J.M., Xu, X., Zhang, L., Nie, Q.J., Xian, M. 2009. Biodiesel production from oleaginous microorganisms. Renewable Energy, 34(1), 1-5.
    Merigout, P., Lelandais, M., Bitton, F., Renou, J.P., Briand, X., Meyer, C., Daniel-Vedele, F. 2008. Physiological and transcriptomic aspects of urea uptake and assimilation in Arabidopsis plants. Plant Physiology, 147(3), 1225-1238.
    Merzlyak, M.N., Chivkunova, O.B., Gorelova, O.A., Reshetnikova, I.V., Solovchenko, A.E., Khozin-Goldberg, I., Cohen, Z. 2007. Effect of nitrogen starvation on optical properties, pigments, and arachidonic acid content of the unicellular green alga Parietochloris incisa (Trebouxiophyceae, Chlorophyta). Journal of Phycology, 43(4), 833-843.
    Metz, B., Davidso, O., Coninck, H., Loos, M., Meyer, L. 2007. IPCC Special report on Carbon Dioxide Capture and Storage, International Panel on Climate Change, Cambridge University Press.
    Mikkelsen, M., Jorgensen, M., Krebs, F.C. 2010. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy & Environmental Science, 3(1), 43-81.
    Moxley, G., Zhang, Y.H.P. 2007. More accurate determination of acid-labile carbohydrates in lignocellulose by modified quantitative saccharification. Energy & Fuels, 21(6), 3684-3688.
    Mussgnug, J.H., Klassen, V., Schluter, A., Kruse, O. 2010. Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology, 150(1), 51-56.
    Mutanda, T., Ramesh, D., Karthikeyan, S., Kumari, S., Anandraj, A., Bux, F. 2011. Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresource Technology, 102(1), 57-70.
    Olivieri, G., Marzocchella, A., Andreozzi, R., Pinto, G., Pollio, A. 2011. Biodiesel production from Stichococcus strains at laboratory scale. Journal of Chemical Technology and Biotechnology, 86(6), 776-783.

    Pal, D., Khozin-Goldberg, I., Cohen, Z., Boussiba, S. 2011. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Applied Microbiology and Biotechnology, 90(4), 1429-1441.
    Pan, Y.Y., Wang, S.T., Chuang, L.T., Chang, Y.W., Chen, C.N.N. 2011. Isolation of thermo-tolerant and high lipid content green microalgae: Oil accumulation is predominantly controlled by photosystem efficiency during stress treatments in Desmodesmus. Bioresource Technology, 102(22), 10510-10517.
    Patil, P.D., Gude, V.G., Mannarswamy, A., Deng, S.G., Cooke, P., Munson-McGee, S., Rhodes, I., Lammers, P., Nirmalakhandan, N. 2011. Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. Bioresource Technology, 102(1), 118-122.
    Perez-Garcia, O., Escalante, F.M.E., de-Bashan, L.E., Bashan, Y. 2011. Heterotrophic cultures of microalgae: Metabolism and potential products. Water Research, 45(1), 11-36.
    Radakovits, R., Jinkerson, R.E., Darzins, A., Posewitz, M.C. 2010. Genetic Engineering of Algae for Enhanced Biofuel Production. Eukaryotic Cell, 9(4), 486-501.
    Ramos, M.J., Fernandez, C.M., Casas, A., Rodriguez, L., Perez, A. 2009. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology, 100(1), 261-268.
    Reijnders, L. 2008. Do biofuels from microalgae beat biofuels from terrestrial plants? Trends in Biotechnology, 26(7), 349-350.

    Renaud, S.M., Thinh, L.V., Lambrinidis, G., Parry, D.L. 2002. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture, 211(1-4), 195-214.
    Renaud, S.M., Zhou, H.C., Parry, D.L., Thinh, L.V., Woo, K.C. 1995. Effect of temperature on the growth, total lipid content and fatty acid composition of recently isolated tropical microalgae Isochrysis sp., Nitzschia closterium, Nitzschia paleacea, and commercial species Isochrysis sp. (clone T ISO). Journal of Applied Phycology, 7(6), 595-602.
    Richmond, A. 2004. Handbook of Microalgal Culture: Biotechnology and Applied Phycology, Blackwell Science Ltd, a Blackwell Publishing company.
    Rodolfi, L., Zittelli, G.C., Bassi, N., Padovani, G., Biondi, N., Bonini, G., Tredici, M.R. 2009. Microalgae for Oil: Strain Selection, Induction of Lipid Synthesis and Outdoor Mass Cultivation in a Low-Cost Photobioreactor. Biotechnology and Bioengineering, 102(1), 100-112.
    Salim, S., Bosma, R., Vermue, M.H., Wijffels, R.H. 2011. Harvesting of microalgae by bio-flocculation. Journal of Applied Phycology, 23(5), 849-855.
    Sanchez, J.L.G., Perez, J.A.S., Camacho, F.G., Sevilla, J.M.F., Grima, E.M. 1996. Optimization of light and temperature for growing Chlorella sp. using response surface methodology. Biotechnology Techniques, 10(5), 329-334.
    Santelices, B. 2007. The discovery of kelp forests in deep-water habitats of tropical regions. Proceedings of the National Academy of Sciences of the United States of America, 104(49), 19163-19164.

    Scott, S.A., Davey, M.P., Dennis, J.S., Horst, I., Howe, C.J., Lea-Smith, D.J., Smith, A.G. 2010. Biodiesel from algae: challenges and prospects. Current Opinion in Biotechnology, 21(3), 277-286.
    Sforza, E., Bertucco, A., Morosinotto, T., Giacometti, G.M. 2012. Photobioreactors for microalgal growth and oil production with Nannochloropsis salina: From lab-scale experiments to large-scale design. Chemical Engineering Research & Design, 90(9), 1151-1158.
    Shafiee, S., Topal, E. 2009. When will fossil fuel reserves be diminished? Energy Policy, 37(1), 181-189.
    Sobczuk, T.M., Chisti, Y. 2010. Potential fuel oils from the microalga Choricystis minor. Journal of Chemical Technology and Biotechnology, 85(1), 100-108.
    Solovchenko, A.E., Khozin-Goldberg, I., Didi-Cohen, S., Cohen, Z., Merzlyak, M.N. 2008. Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. Journal of Applied Phycology, 20(3), 245-251.
    Spolaore, P., Joannis-Cassan, C., Duran, E., Isambert, A. 2006. Optimization of Nannochloropsis oculata growth using the response surface method. Journal of Chemical Technology and Biotechnology, 81(6), 1049-1056.
    Stansell, G.R., Gray, V.M., Sym, S.D. 2012. Microalgal fatty acid composition: implications for biodiesel quality. Journal of Applied Phycology, 24(4), 791-801.
    Su, C.H., Chien, L.J., Gomes, J., Lin, Y.S., Yu, Y.K., Liou, J.S., Syu, R.J. 2011. Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. Journal of Applied Phycology, 23(5), 903-908.

    Sukenik, A., Livne, A. 1991. Variations in Lipid and Fatty-Acid Content in Relation to Acetyl Coa Carboxylase in the Marine Prymnesiophyte Isochrysis-Galbana. Plant and Cell Physiology, 32(3), 371-378.
    Takagi, M., Watanabe, K., Yamaberi, K., Yoshida, T. 2000. Limited feeding of potassium nitrate for intracellular lipid and triglyceride accumulation of Nannochloris sp. UTEX LB1999. Applied Microbiology and Biotechnology, 54(1), 112-117.
    Tang, H.Y., Chen, M., Garcia, M.E.D., Abunasser, N., Ng, K.Y.S., Salley, S.O. 2011. Culture of Microalgae Chlorella minutissima for Biodiesel Feedstock Production. Biotechnology and Bioengineering, 108(10), 2280-2287.
    Tang, H.Y., Chen, M., Ng, K.Y.S., Salley, S.O. 2012. Continuous microalgae cultivation in a photobioreactor. Biotechnology and Bioengineering, 109(10), 2468-2474.
    Tierney, M.S., Croft, A.K., Hayes, M. 2010. A review of antihypertensive and antioxidant activities in macroalgae. Botanica Marina, 53(5), 387-408.
    Van Wagenen, J., Miller, T.W., Hobbs, S., Hook, P., Crowe, B., Huesemann, M. 2012. Effects of Light and Temperature on Fatty Acid Production in Nannochloropsis Salina. Energies, 5(3), 731-740.
    Varfolomeev, S.D., Wasserman, L.A. 2011. Microalgae as Source of Biofuel, Food, Fodder, and Medicines. Applied Biochemistry and Microbiology, 47(9), 789-807.
    Vasudevan, P.T., Briggs, M. 2008. Biodiesel production-current state of the art and challenges. Journal of Industrial Microbiology & Biotechnology, 35(5), 421-430.

    Viola, E., Zimbardi, F., Valerio, V. 2011. Graphical method to select vegetable oils as potential feedstock for biodiesel production. European Journal of Lipid Science and Technology, 113(12), 1541-1549.
    Wang, B., Lan, C.Q. 2011. Optimising the Lipid Production of the Green Alga Neochloris Oleoabundans Using Box-Behnken Experimental Design. Canadian Journal of Chemical Engineering, 89(4), 932-939.
    Wang, L.A., Min, M., Li, Y.C., Chen, P., Chen, Y.F., Liu, Y.H., Wang, Y.K., Ruan, R. 2010. Cultivation of Green Algae Chlorella sp. in Different Wastewaters from Municipal Wastewater Treatment Plant. Applied Biochemistry and Biotechnology, 162(4), 1174-1186.
    Wang, S.T., Pan, Y.Y., Liu, C.C., Chuang, L.T., Chen, C.N. 2011. Characterization of a green microalga UTEX 2219-4: Effects of photosynthesis and osmotic stress on oil body formation. Botanical Studies, 52(3), 305-312.
    Wei, N., Quarterman, J., Jin, Y.S. 2013. Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends in Biotechnology, 31(2), 70-77.
    Wu, L.F., Chen, P.C., Huang, A.P., Lee, C.M. 2012a. The feasibility of biodiesel production by microalgae using industrial wastewater. Bioresource Technology, 113, 14-18.
    Wu, Y.H., Yu, Y., Li, X., Hu, H.Y., Su, Z.F. 2012b. Biomass production of a Scenedesmus sp under phosphorous-starvation cultivation condition. Bioresource Technology, 112, 193-198.
    Xiong, W., Li, X.F., Xiang, J.Y., Wu, Q.Y. 2008. High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Applied Microbiology and Biotechnology, 78(1), 29-36.

    Yang, C., Hua, Q., Shimizu, K. 2000. Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochemical Engineering Journal, 6(2), 87-102.
    Yeesang, C., Cheirsilp, B. 2011. Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresource Technology, 102(3), 3034-3040.
    Yeh, K.L., Chang, J.S. 2012. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresource Technology, 105, 120-127.
    Yusuf, N.N.A.N., Kamarudin, S.K., Yaakub, Z. 2011. Overview on the current trends in biodiesel production. Energy Conversion and Management, 52(7), 2741-2751.
    Zhong, W.Y., Haigh, J.D. 2013. The greenhouse effect and carbon dioxide. Weather, 68(4), 100-105.
    Zhou, W.G., Li, Y.C., Min, M., Hu, B., Zhang, H., Ma, X.C., Li, L., Cheng, Y.L., Chen, P., Ruan, R. 2012. Growing wastewater-born microalga Auxenochlorella protothecoides UMN280 on concentrated municipal wastewater for simultaneous nutrient removal and energy feedstock production. Applied Energy, 98, 433-440.
    Zhou, X.P., Ge, H.M., Xia, L., Zhang, D.L., Hu, C.X. 2013. Evaluation of oil-producing algae as potential biodiesel feedstock. Bioresource Technology, 134, 24-29.

    Zhu, J.Y., Rong, J.F., Zong, B.N. 2013. Factors in mass cultivation of microalgae for biodiesel. Chinese Journal of Catalysis, 34(1), 80-100.

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE