| 研究生: |
劉倩如 Liu, Chien-Ju |
|---|---|
| 論文名稱: |
EB 病毒相關噬血症候群動物模式引發紅血球自體抗體的特殊抗原鑑定 Identification of the Specific Antigens Recognized by Autoantibodies to Red cells in An Animal Model of EBV-associated Hemophagocytic Syndrome |
| 指導教授: |
蘇益仁
Su, Ih-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 噬血症候群 、EB病毒 |
| 外文關鍵詞: | EBV, hemophgocytic syndrome |
| 相關次數: | 點閱:51 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
噬血症候群(hemophagocytic syndrome)是病毒感染如 EB 病毒,禽流感,登革熱病毒,和 SARS 冠狀病毒感染的主要死亡原因之一。噬血症候群的病人通常會伴隨出現發燒、黃疸、肝脾腫大、全血球減少(pancytopenia),和血液凝固病變(coagulopathy)。在實驗室的診斷上,病人有溶血、膽色素增加、貧血、三酸甘油脂增加、纖維蛋白原(fibrinogen)下降等。基於我們實驗室和其他研究人員的研究,噬血症候群的致病機轉是病毒感染後,造成毒殺 T 淋巴球(cytotoxic T lymphocyte)的過度免疫反應,使得 Th1 細胞激素(cytokines)的分泌增加,進而造成巨噬細胞(macrophage)活化,而導致噬血症候群。巨噬細胞可能經由一個非任意的或專一性的過程活化,而去吞噬紅血球。在 EB 病毒感染相關的疾病已經有許多的動物模式被建立,但是 EB 病毒感染所引發的噬血症候群,卻一直沒有一個很好的動物模式來幫助解答問題。2001 年,Hayashi 等人在兔子身上以 herpesvirus papio (HVP)感染,建立了 EB 病毒相關的噬血症候群動物模式,我們實驗室過去利用此模式發現紅血球被吞噬以及造成快速死亡與病人或動物血清中出現紅血球的自體抗體(auto-antibody)有關。抗體標定的紅血球經由 Fc 受體辨識而造成血球被吞噬,因此紅血球自體抗體的產生可能是造成血球吞噬的重要原因。所以在本研究當中,主要想要去鑑定紅血球膜上的此一專一性自體抗原。我們建立了病毒噬血症候群的動物模式後,利用免疫沉澱法/二維(2D)蛋白質分析以及噬菌體呈現技術(phage display)兩種方法來鑑定特殊抗原。在蛋白質體學研究當中,我們首先從六隻感染 HVP 兔子體內分離紅血球膜蛋白,然後再使用未感染前的血清進行去除背景,接著使用已經感染後的血清進行免疫沉澱。結果顯示,發現感染後的紅血球膜蛋白和感染前正常紅血球膜蛋白的表現結果不一樣,但是不管正常紅血球膜蛋白或是感染病毒的紅血球膜蛋白經由免疫沉澱法,所表現的均為兔子紅血球表面的特殊抗原,因此更進一步將所獲得的產物再以二維電泳做蛋白質鑑定。在二維電泳的結果中,發現使用感染後的紅血球膜蛋白和未發病前的紅血球膜蛋白的膠體上有不同的點,將這些點取出進行蛋白質鑑定。我們同時也使用噬菌體呈現技術(phage display)去鑑定自體抗體所辨識的專一性胜肽序列。初步蛋白質鑑定結果顯示取出進行的點為纖維蛋白原(fibrinogen)、免疫球蛋白kappa鏈、白蛋白(albumin)、免疫球蛋白重鏈,但真正的特殊抗原為何仍待進一步研究來澄清。
Hemophagocytic syndrome (HPS) is a virus-associated clinical disease and may occur in several virus infections such as avian influenza, dengue fever, SARS-CoV infection, and EBV infection. HPS is characterized by fever, hepatosplenomegaly, cytopenia and coagulopathy. Serum chemistry findings may suggest hemolysis, with hyperbilirubinemia and elevation of lactate dehydrogenase. Serum fibrinogen is typically low, and there may be disseminated intravascular coagulation. Histopathologically, hemophagocytosis is seen in bone marrow, spleen, and lymph nodes. Clinical and biological manifestations result from the secretion of huge amounts of cytokines by activated T cells and macrophages. Activated macrophages may engulf erythrocytes, leukocytes, and platelets, their precursors, and cellular fragments. The production of autoantibodies might be important for hemophagocytosis. In our preliminary studies, we have shown that activated macrophages were able to specifically engulf antibody-coated RBC but not uncoated RBC. In a rabbit model of EBV-associated HS, the presence of autoantibodies against RBC is an intial event for subsequent phagocytosis of RBC and rapid mortality. In this study, we aim to identify the specific autoantigens on the RBC membrane. Two different approaches were used, i.e., co-immunoprecipitation/2D proteomic analysis and phage display. For the proteomic approach, RBC membrane proteins from six HVP-infected rabbits were firstly applied in the Western blotting by using either pre-immune and post-infected serum. Our results revealed that the presence of autoantigens increased with HVP-infection. The same protein lysates will then be used for co-immunprecipitation with post-infected serum, and the resulted products will be resolved by 2-D electrophoresis and protein identification. Our results revealed that autoantigens may be the fibrinogen, Ig kappa chain C region, albumin and Ig heavy chain region. For the identification of specific peptide sequences recognized by the autoantibodies, we performed the phage display experiments with the same post-infected antiserum. Phages carrying specific peptide sequences for the autoantibody will be selected and identified after repeated biopanning. The identified autoantigen would be very useful in the understanding of the pathogenesis of EBV-associated hemophagocytic syndrome.
Aozasa, K., Ohsawa, M., Tajima, K., Sasaki, R., Maeda, H., Matsunaga, T., and Friedmann, I. (1989). Nation-wide study of lethal mid-line granuloma in Japan: frequencies of Wegener's granulomatosis, polymorphic reticulosis, malignant lymphoma and other related conditions. Int J Cancer 44, 63-66.
Baer, R., Bankier, A. T., Biggin, M. D., Deininger, P. L., Farrell, P. J., Gibson, T. J., Hatfull, G., Hudson, G. S., Satchwell, S. C., Seguin, C., and et al. (1984). DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310, 207-211.
Burkitt, D. (1958). A sarcoma involving the jaws in African children. Br J Surg 46, 218-223.
Caballes, R. L., Caballes-Ponce, M. G., and Kim, D. U. (1997). Familial hemophagocytic lymphohistiocytosis (FHLH). Pathology 29, 92-95.
Coffernils, M., Soupart, A., Pradier, O., Feremans, W., Neve, P., and Decaux, G. (1992). Hyperferritinemia in adult onset Still's disease and the hemophagocytic syndrome. J Rheumatol 19, 1425-1427.
Cohen, J. I. (2000). Epstein-Barr virus infection. N Engl J Med 343, 481-492.
Cote, H. C., Lord, S. T., and Pratt, K. P. (1998). gamma-chain dysfibrinogenemias: molecular structure-function relationship of naturally occurring mutations in the gamma chain of human fibrinogen. Blood 92, 2195-2212.
Dambaugh, T., Beisel, C., Hummel, M., King, W., Fennewald, S., Cheung, A., Heller, M., Raab-Traub, N., and Kieff, E. (1980). Epstein-Barr virus (B95-8) DNA VII: molecular cloning and detailed mapping. Proc Natl Acad Sci U S A 77, 2999-3003.
Dolezal, M. V., Kamel, O. W., van de Rijn, M., Cleary, M. L., Sibley, R. K., and Warnke, R. A. (1995). Virus-associated hemophagocytic syndrome characterized by clonal Epstein-Barr virus genome. Am J Clin Pathol 103, 189-194.
Epstein, M. A., Achong, B. G., and Barr, Y. M. (1964). Virus particles In cultured lymphoblasts from Burkitt's lymphoma. Lancet 15, 702-703.
Epstein, M. A., and Barr, Y. M. (1964). Cultivation in vitro of human lymphoblasts from Burkitt's malignant lymphoma. Lancet 41, 252-253.
Falk, L. A., Jr. (1979). A review of Herpesvirus papio, a B-lymphotropic virus of baboons related to EBV. Comp Immunol Microbiol Infect Dis 2, 257-264.
Fisman, D. N. (2000). Hemophagocytic syndromes and infection. Emerg Infect Dis 6, 601-608.
Given, D., and Kieff, E. (1978). DNA of Epstein-Barr virus. IV. Linkage map of restriction enzyme fragments of the B95-8 and W91 strains of Epstein-Barr Virus. J Virol 28, 524-542.
Hayashi, K., Koirala, T. R., Ino, H., Chen, H. L., Ohara, N., Teramoto, N., Yoshino, T., Takahashi, K., Yamada, M., Nii, S., and et al. (1995). Malignant lymphoma induction in rabbits by intravenous inoculation of Epstein-Barr-virus-related herpesvirus from HTLV-II-transformed cynomolgus leukocyte cell line (Si-IIA). Int J Cancer 63, 872-880.
Hayashi, K., Ohara, N., Teramoto, N., Onoda, S., Chen, H. L., Oka, T., Kondo, E., Yoshino, T., Takahashi, K., Yates, J., and Akagi, T. (2001). An animal model for human EBV-associated hemophagocytic syndrome: herpesvirus papio frequently induces fatal lymphoproliferative disorders with hemophagocytic syndrome in rabbits. Am J Pathol 158, 1533-1542.
Hayashi, K., Teramoto, N., and Akagi, T. (2002). Animal in vivo models of EBV-associated lymphoproliferative diseases: special references to rabbit models. Histol Histopathol 17, 1293-1310.
Henle, G., and Henle, W. (1966). Immunofluorescence in cells derived from Burkitt's lymphoma. J Bacteriol 91, 1248-1256.
Henle, G., Henle, W., and Diehl, V. (1968). Relation of Burkitt's tumor-associated herpes-ytpe virus to infectious mononucleosis. Proc Natl Acad Sci U S A 59, 94-101.
Henle, W., and Henle, G. (1970). Evidence for a relation of Epstein-Barr virus to Burkitt's lymphoma and nasopharyngeal carcinoma. Bibl Haematol, 706-713.
Ikeda, K., Nawata, M., Ando, S., Koike, M., Sekigawa, I., Iida, N., Hashimoto, H., and Hirose, S. (2000). Antiphospholipid antibody-associated haemophagocytic syndrome. Rheumatology (Oxford) 39, 564-565.
Imashuku, S. (1997). Differential diagnosis of hemophagocytic syndrome: underlying disorders and selection of the most effective treatment. Int J Hematol 66, 135-151.
Imashuku, S., Hibi, S., Fujiwara, F., Ikushima, S., and Todo, S. (1994). Haemophagocytic lymphohistiocytosis, interferon-gamma-naemia and Epstein-Barr virus involvement. Br J Haematol 88, 656-658.
Imashuku, S., Hlbi, S., and Todo, S. (1997). Hemophagocytic lymphohistiocytosis in infancy and childhood. J Pediatr 130, 352-357.
Indik, Z. K., Park, J. G., Hunter, S., and Schreiber, A. D. (1995). The molecular dissection of Fc gamma receptor mediated phagocytosis. Blood 86, 4389-4399.
Janka, G., Imashuku, S., Elinder, G., Schneider, M., and Henter, J. I. (1998). Infection- and malignancy-associated hemophagocytic syndromes. Secondary hemophagocytic lymphohistiocytosis. Hematol Oncol Clin North Am 12, 435-444.
Jenson, H. B., Ench, Y., Gao, S. J., Rice, K., Carey, D., Kennedy, R. C., Arrand, J. R., and Mackett, M. (2000). Epidemiology of herpesvirus papio infection in a large captive baboon colony: similarities to Epstein-Barr virus infection in humans. J Infect Dis 181, 1462-1466.
Johannessen, I., and Crawford, D. H. (1999). In vivo models for Epstein-Barr virus (EBV)-associated B cell lymphoproliferative disease (BLPD). Rev Med Virol 9, 263-277.
Jones, J. F., Shurin, S., Abramowsky, C., Tubbs, R. R., Sciotto, C. G., Wahl, R., Sands, J., Gottman, D., Katz, B. Z., and Sklar, J. (1988). T-cell lymphomas containing Epstein-Barr viral DNA in patients with chronic Epstein-Barr virus infections. N Engl J Med 318, 733-741.
Kaplan, C., Morinet, F., and Cartron, J. (1992). Virus-induced autoimmune thrombocytopenia and neutropenia. Semin Hematol 29, 34-44.
Kawaguchi, H., Miyashita, T., Herbst, H., Niedobitek, G., Asada, M., Tsuchida, M., Hanada, R., Kinoshita, A., Sakurai, M., Kobayashi, N., and et al. (1993). Epstein-Barr virus-infected T lymphocytes in Epstein-Barr virus-associated hemophagocytic syndrome. J Clin Invest 92, 1444-1450.
Khanna, R., Burrows, S. R., and Moss, D. J. (1995). Immune regulation in Epstein-Barr virus-associated diseases. Microbiol Rev 59, 387-405.
Kikuta, H. (1995). Epstein-Barr virus-associated hemophagocytic syndrome. Leuk Lymphoma 16, 425-429.
Kumakura, S., Ishikura, H., Endo, J., and Kobayashi, S. (1995). Autoimmune-associated hemophagocytosis. Am J Hematol 50, 148-149.
Kumakura, S., Ishikura, H., Umegae, N., Yamagata, S., and Kobayashi, S. (1997). Autoimmune-associated hemophagocytic syndrome. Am J Med 102, 113-115.
Lane, H. C., Masur, H., Edgar, L. C., Whalen, G., Rook, A. H., and Fauci, A. S. (1983). Abnormalities of B-cell activation and immunoregulation in patients with the acquired immunodeficiency syndrome. N Engl J Med 309, 453-458.
Lawrence, J. S., Craddock, C. G., Jr., and Campbell, T. N. (1967). Antineutrophilic serum, its use in studies of white blood cell dynamics. J Lab Clin Med 69, 88-101.
Lay, J. D., Chuang, S. E., Rowe, M., and Su, I. J. (2003). Epstein-barr virus latent membrane protein-1 mediates upregulation of tumor necrosis factor-alpha in EBV-infected T cells: implications for the pathogenesis of hemophagocytic syndrome. J Biomed Sci 10, 146-155.
Lay, J. D., Tsao, C. J., Chen, J. Y., Kadin, M. E., and Su, I. J. (1997). Upregulation of tumor necrosis factor-alpha gene by Epstein-Barr virus and activation of macrophages in Epstein-Barr virus-infected T cells in the pathogenesis of hemophagocytic syndrome. J Clin Invest 100, 1969-1979.
Lee, Y. S., Tanaka, A., Lau, R. Y., Nonoyama, M., and Rabin, H. (1981). Linkage map of the fragments of herpesvirus papio DNA. J Virol 37, 710-720.
Miller, C. L., Burkhardt, A. L., Lee, J. H., Stealey, B., Longnecker, R., Bolen, J. B., and Kieff, E. (1995). Integral membrane protein 2 of Epstein-Barr virus regulates reactivation from latency through dominant negative effects on protein-tyrosine kinases. Immunity 2, 155-166.
Niedobitek, G., Agathanggelou, A., Finerty, S., Tierney, R., Watkins, P., Jones, E. L., Morgan, A., Young, L. S., and Rooney, N. (1994). Latent Epstein-Barr virus infection in cottontop tamarins. A possible model for Epstein-Barr virus infection in humans. Am J Pathol 145, 969-978.
Nilsson, K., and Klein, G. (1982). Phenotypic and cytogenetic characteristics of human B-lymphoid cell lines and their relevance for the etiology of Burkitt's lymphoma. Adv Cancer Res 37, 319-380.
Okano, M., and Gross, T. G. (1996). Epstein-Barr virus-associated hemophagocytic syndrome and fatal infectious mononucleosis. Am J Hematol 53, 111-115.
Oldstone, M. B. (1987). Molecular mimicry and autoimmune disease. Cell 50, 819-820.
Onishi, R., and Namiuchi, S. (1994). Hemophagocytic syndrome in a patient with rheumatoid arthritis. Intern Med 33, 607-611.
Pope, J. H., Horne, M. K., and Scott, W. (1968). Transformation of foetal human keukocytes in vitro by filtrates of a human leukaemic cell line containing herpes-like virus. Int J Cancer 3, 857-866.
Reiner, A. P., and Spivak, J. L. (1988). Hematophagic histiocytosis. A report of 23 new patients and a review of the literature. Medicine (Baltimore) 67, 369-388.
Shastri, K. A., and Logue, G. L. (1993). Autoimmune neutropenia. Blood 81, 1984-1995.
Silverman, J. F., Singh, H. K., Joshi, V. V., Holbrook, C. T., Chauvenet, A. R., Harris, L. S., and Geisinger, K. R. (1993). Cytomorphology of familial hemophagocytic syndrome. Diagn Cytopathol 9, 404-410.
Sixbey, J. W., Nedrud, J. G., Raab-Traub, N., Hanes, R. A., and Pagano, J. S. (1984). Epstein-Barr virus replication in oropharyngeal epithelial cells. N Engl J Med 310, 1225-1230.
Sixbey, J. W., Vesterinen, E. H., Nedrud, J. G., Raab-Traub, N., Walton, L. A., and Pagano, J. S. (1983). Replication of Epstein-Barr virus in human epithelial cells infected in vitro. Nature 306, 480-483.
Smith, G. P. (1985). Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228, 1315-1317.
Stephan, J. L., Zeller, J., Hubert, P., Herbelin, C., Dayer, J. M., and Prieur, A. M. (1993). Macrophage activation syndrome and rheumatic disease in childhood: a report of four new cases. Clin Exp Rheumatol 11, 451-456.
Su, I. J., Chen, R. L., Lin, D. T., Lin, K. S., and Chen, C. C. (1994). Epstein-Barr virus (EBV) infects T lymphocytes in childhood EBV-associated hemophagocytic syndrome in Taiwan. Am J Pathol 144, 1219-1225.
Su, I. J., Hsieh, H. C., Lin, K. H., Uen, W. C., Kao, C. L., Chen, C. J., Cheng, A. L., Kadin, M. E., and Chen, J. Y. (1991). Aggressive peripheral T-cell lymphomas containing Epstein-Barr viral DNA: a clinicopathologic and molecular analysis. Blood 77, 799-808.
Su, I. J., Wang, C. H., Cheng, A. L., and Chen, R. L. (1995). Hemophagocytic syndrome in Epstein-Barr virus-associated T-lymphoproliferative disorders: disease spectrum, pathogenesis, and management. Leuk Lymphoma 19, 401-406.
Sutton, R. N., Emond, R. T., Thomas, D. B., and Doniach, D. (1974). The occurrence of autoantibodies in infectious mononucleosis. Clin Exp Immunol 17, 427-436.
Suzushima, H., Asou, N., Fujimoto, T., Nishimura, S., Okubo, T., Yamasaki, H., Osato, M., Matsuoka, M., Tsukamoto, A., Takai, K., and et al. (1995). Lack of the expression of EBNA-2 and LMP-1 in T-cell neoplasms possessing Epstein-Barr virus. Blood 85, 480-486.
Swaminathan, S., Tomkinson, B., and Kieff, E. (1991). Recombinant Epstein-Barr virus with small RNA (EBER) genes deleted transforms lymphocytes and replicates in vitro. Proc Natl Acad Sci U S A 88, 1546-1550.
Takada, K., and Ono, Y. (1989). Synchronous and sequential activation of latently infected Epstein-Barr virus genomes. J Virol 63, 445-449.
Thorley-Lawson, D. A., and Gross, A. (2004). Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N Engl J Med 350, 1328-1337.
Toyoshige, M., and Takahashi, H. (1998). Increase of platelet-associated IgG (PA-IgG) and hemophagocytosis of neutrophils and platelets in parvovirus B19 infection. Int J Hematol 67, 205-206.
Vaughan, J. H., Nguyen, M. D., Valbracht, J. R., Patrick, K., and Rhodes, G. H. (1995). Epstein-Barr virus-induced autoimmune responses. II. Immunoglobulin G autoantibodies to mimicking and nonmimicking epitopes. Presence in autoimmune disease. J Clin Invest 95, 1316-1327.
Wang, D., Liebowitz, D., and Kieff, E. (1985). An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 43, 831-840.
Wasinger, V. C., Cordwell, S. J., Cerpa-Poljak, A., Yan, J. X., Gooley, A. A., Wilkins, M. R., Duncan, M. W., Harris, R., Williams, K. L., and Humphery-Smith, I. (1995). Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 16, 1090-1094.
Weiss, L. M., Strickler, J. G., Warnke, R. A., Purtilo, D. T., and Sklar, J. (1987). Epstein-Barr viral DNA in tissues of Hodgkin's disease. Am J Pathol 129, 86-91.
Wolf, H., zur Hausen, H., and Becker, V. (1973). EB viral genomes in epithelial nasopharyngeal carcinoma cells. Nat New Biol 244, 245-247.
Wong, K. F., and Chan, J. K. (1992). Reactive hemophagocytic syndrome--a clinicopathologic study of 40 patients in an Oriental population. Am J Med 93, 177-180.
Wong, K. F., Hui, P. K., Chan, J. K., Chan, Y. W., and Ha, S. Y. (1991). The acute lupus hemophagocytic syndrome. Ann Intern Med 114, 387-390.
Yates, J., Warren, N., Reisman, D., and Sugden, B. (1984). A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells. Proc Natl Acad Sci U S A 81, 3806-3810.
Yates, J. L., Camiolo, S. M., Ali, S., and Ying, A. (1996). Comparison of the EBNA1 proteins of Epstein-Barr virus and herpesvirus papio in sequence and function. Virology 222, 1-13.
Zur Hausen, H., O'Neill, F. J., Freese, U. K., and Hecker, E. (1978). Persisting oncogenic herpesvirus induced by the tumour promotor TPA. Nature 272, 373-375.
蕭冠中. Mechanism of Hemophagocytosis in Epstein-Barr virus Associated Hemophagocytic Syndrome.成功大學微生物及免疫學研究所碩士論文 2004.