| 研究生: |
鄧孟澤 Teng, Meng-Tse |
|---|---|
| 論文名稱: |
應用數位式硬體模擬試驗進行即時振動台複合實驗誤差之階段性探討 Preliminary Study on the Error Between RTHT-ST and STT Through Digital Hardware Simulation Test |
| 指導教授: |
朱世禹
Chu, Shih-Yu |
| 共同指導教授: |
方中
Fang, Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 即時振動台複合實驗誤差之階段性探討 、數位式硬體模擬試驗架構 、振動台系統之轉換函數 、SCRAMNet 、Simulink-Realtime 、OKID/ERA |
| 外文關鍵詞: | real-time shaking table hybrid testing, digital hardware simulation framework, the transfer function of shaking table, OKID/ERA, SCRAMNet |
| 相關次數: | 點閱:77 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,有許多結構物因受到地震的侵襲下而產生嚴重的損壞,結構物耐震補強因此備受重視,然而,目前仍有許多危老建築將面臨地震的挑戰,所以為了防範地震造成建物主要結構構件的破壞,消能與隔震裝置的補強與裝設是目前最常出現的解決方案,例如:隔震與制震大樓的興起,為了確保這些消能裝置能夠達到結構物減震與隔震之效果,於是採用振動台實驗作為驗證是最有效的方法,然而真實結構物過於龐大,僅能以縮尺模型替代,並不能完整呈現結構物之動態行為。此時,則突顯了擬動態實驗的重要性,而為了使加載速率更接近真實結構系統之反應,前人提出與振動台系統結合之技術,稱為「即時振動台複合實驗」。本文將使用記憶體共享光纖網路設備,結合即時振動台複合實驗之技術,建立一套SCRAMNet數位式硬體模擬試驗架構,並對於即時振動台複合實驗誤差進行階段性之探討,目前僅能對於即時振動台複合實驗之主結構控制誤差進行評估,其中將會使用到OKID/ERA識別方法以建立振動台系統之識別模型,未來當SCRAMNet相關軟硬體設備結合於振動台系統控制與集錄之技術發展成熟後,即可應用此架構進行更深入的誤差探討。
In recent years, many buildings have been seriously damaged by the earthquake excitation. To prevent the damage of the major structural components of the building caused by the seismic events, installation of energy-dissipating devices or isolators is the most common solutions. To ensure the effectiveness of these energy-dissipating devices to mitigate the vibrational response of buildings, shaking table test (STT) is an appropriate method for verification. However, limited by the payload of a shaking table and the scale-down effect of a specimen, it is impossible to fully illustrate the dynamic responses of a real structural system under seismic events. A hybrid testing technique that combines with a shaking table and the numerical model of the main structure is proposed and called real-time hybrid testing with a shake table (RTHT-ST). In this thesis, a digital hardware simulation test framework employed with the shared memory fiber-optic network apparatus link (SCRAMNet) is proposed. The advantage of this framework is to evaluate the possible error sources regarding the results between numerical simulations, RTHT-ST, and STT. Furthermore, it can ensure the feasibility and provide the fail-safe estimation of the experimental facilities. Especially, it can be applied to discuss the error between RTHT-ST and STT in detail by comparing with the traditional analog (A/D-D/A) hardware simulation framework. In the future, when the development of SCRAMNet-based software/hardware interface is mature enough, this digital hardware simulation framework can be applied for more in-depth error investigation.
[1] Hakuno, M., Shidawara, M., & Hara, T. (1969, November). Dynamic destructive test of a cantilever beam, controlled by an analog-computer. In Proceedings of the Japan society of civil engineers (Vol. 1969, No. 171, pp. 1-9). Japan Society of Civil Engineers.
[2] Takanashi, K., Udagawa, K., Seki, M., Okada, T., & Tanaka, H. (1975). Nonlinear earthquake response analysis of structures by a computer-actuator on-line system. Bulletin of Earthquake Resistant Structure Research Center, 8, 1-17.
[3] Dermitzakis, S. N., & Mahin, S. A. (1985). Development of substructuring techniques for on-line computer controlled seismic performance testing (Doctoral dissertation, University of California, Berkeley).
[4] Nakashima, M., Kato, H., & Takaoka, E. (1992). Development of real‐time pseudo dynamic testing. Earthquake Engineering & Structural Dynamics, 21(1), 79-92.
[5] Chung, W. J., Yun, C. B., Kim, N. S., & Seo, J. W. (1999). Shaking table and pseudodynamic tests for the evaluation of the seismic performance of base-isolated structures. Engineering Structures, 21(4), 365-379.
[6] Horiuchi, T., Inoue, M., Konno, T., & Yamagishi, W. (1999). Development of a Real-Time Hybrid Experimental System Using a Shaking Table:(Proposal of Experiment Concept and Feasibility Study with Rigid Secondary System). JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 42(2), 255-264.
[7] LEHIGH University., “Real-time multi-directional (RTMD) earthquake simulation facility” Users Guide Version 1.0 (2004).
[8] Gilberto Mosqueda., “User’s manual–hybrid controller” nees@berkeley (2004).
[9] Reinhorn, A., Sivaselvan, M., Weinreber, S., & Shao, X. (2004). Real-time dynamic hybrid testing of structural systems.
[10] Carrion, J. E., & Spencer Jr, B. F. (2007). Model-based strategies for real-time hybrid testing. Newmark Structural Engineering Laboratory. University of Illinois at Urbana-Champaign..
[11] Yang, T. Y., Mosqueda, G., & Stojadinovic, B. Evaluating the quality of hybrid simulation test using an energy-based approach.
[12] Wang, T., Cheng, C., “A Model-based Predictor-Corrector Algorithm for Substructure Hybrid Test System” Proceeding of the Ninth Pacific Conference on Earthquake Engineering, No:152, (2011).
[13] Wang, J. T., Gui, Y., Zhu, F., Jin, F., & Zhou, M. X. (2016). Real‐time hybrid simulation of multi‐story structures installed with tuned liquid damper. Structural Control and Health Monitoring, 23(7), 1015-1031.
[14] Zhang, R., Lauenstein, P. V., & Phillips, B. M. (2016). Real-time hybrid simulation of a shear building with a uni-axial shake table. Engineering Structures, 119, 217-229.
[15] Lu, L. Y., Lee, T. Y., Juang, S. Y., & Yeh, S. W. (2013). Polynomial friction pendulum isolators (PFPIs) for building floor isolation: An experimental and theoretical study. Engineering Structures, 56, 970-982.
[16] Warburton, G. B. (1982). Optimum absorber parameters for various combinations of response and excitation parameters. Earthquake Engineering & Structural Dynamics, 10(3), 381-401.
[17] Chu, S. Y., Lu, L. Y., & Yeh, S. W. (2018). Real‐time hybrid testing of a structure with a piezoelectric friction controllable mass damper by using a shake table. Structural Control and Health Monitoring, 25(3), e2124.
[18] Chu, S. Y., Lo, S. C., & Li, M. H. (2006, October). Application of ScramNet System in Real-Time Pseudodynamic Test and Simulation. In 4th International Conference on Earthquake Engineering.
[19] Chu, S. Y. and Lo, S. C. “Pseudo dynamic testing of subassemblage based on discrete-time state-space integration through SCRAM-Net configuration.” Proceedings of the International Symposium on Experimental Vibration Analysis for Civil Engineering Structures (EVACES 2005). Bordeaux, France (2005).
[20] Chu, S. Y., Soong, T. T., & Reinhorn, A. M. (2002). Real-time active control verification via a structural simulator. Engineering Structures, 24(3), 343-353.
[21] 羅仕杰,「記憶體共享光纖網路設備於即時擬動態實驗之初步研究」,國立暨南國際大學土木工程研究所,碩士論文,(2005) 。
[22] 林錦隆,「半主動隔震系統之抗震應用研究」,國立高雄第一科技大學工程科技研究所,博士論文,(2008) 。
[23] 何玉泊,「半主動摩擦調諧質量阻尼器之振動台試驗與減振分析」,國立中興大學土木研究所,碩士論文,(2010) 。
[24] 方璿堯,「應用OKID/ERA識別方法校正結構反應預估圖之建立流程」,國立成功大學土木工程研究所,碩士論文,(2010) 。
[25] 朱凱業,「多項式變曲率滑動支承之混合實驗」,國立成功大學土木工程研究所,碩士論文,(2013) 。
[26] 賈博宇,「振動台效能對於PFCMD即時複合實驗之影響探討」,國立成功大學土木研究所,碩士論文,(2016) 。
[27] 葉士瑋,「具摩擦特性振動控制系統即時複合實驗之振動台實驗驗證」,國立成功大學土木工程研究所,博士論文,(2017) 。
[28] 呂仲岳,「應用及時複合實驗進行配置PFCMD多自由度系統控制參數之最佳化探討」國立成功大學土木工程研究所,碩士論文,(2017) 。
[29] 林煒松,「採用不同振動台進行即時複合實驗之效能探討」國立成功大學土木工程研究所,碩士論文,(2018) 。