簡易檢索 / 詳目顯示

研究生: 凃哲維
Tu, Che-Wei
論文名稱: 經由擴環反應製備六元環亞胺醣分子之探討並發展艾杜糖醛酸脢抑制劑
Study of aziridinium ring expansion of poly-substituted pyrrolidines: development of piperidine-based iminosugars and novel alpha-L-iduronidase inhibitors
指導教授: 鄭偉杰
Cheng, Wei-Chieh
共同指導教授: 黃福永
Huang, Fu-Yung
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 121
中文關鍵詞: 亞胺醣分子擴環反應
外文關鍵詞: ring expansion, aziridinium, iminosugars
相關次數: 點閱:73下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以五元環為基底的亞胺醣分子已經被我們實驗室廣泛的合成,但是經由五元環亞胺醣分子製備六元環多羥基的亞胺醣分子還沒有被廣泛的討論,因此我們找出一個有系統的開環方法,從五元環亞胺醣分子去製備六元環多羥基的亞胺醣分子,並且有系統的探討當中的影響因素,像是氮上取代基的影響,反應當中溫度跟溶劑的影響還有反應物上各種不同立體異構中心的影響。探討完有利的開環條件之後,我們將利用這個方法去製備更具有多樣性的六元環亞胺醣分子,並且去找出有潛力的艾杜糖醛酸脢抑制劑。

    Iminosugars, particularly polyhydroxylated pyrrolidines and piperidines, are biologically interesting alkaloids and some alkaloids have shown therapeutic applications in the treatment of diabetes and lysosomal storage disease.
    From the structural point of view, these molecules contain polyhydroxylated groups and multi-stereogenic centers, causing the difficulty in the preparation and modification. Comprehensive synthesis of pyrrolidine-based iminosugars has been reported in our lab. However, preparation of polyhydroxylated piperidines from pyrroldines via ring expansion has not been extensively explored. In this work, we would like to systematically investigate various factors during the aziridinium ring expansion from a polyhydroxylated pyrrolidine into a polyhydroxylated piperidine.
    With these valuable ring expansion conditions in hand, we applied this approach to prepare diversely functionalized piperidines, and also used them for inhibition study toward alpha-L-iduronidase.

    摘要 I Abstract II Acknowledgment III Table of Contents IV Index of Figures VI Index of Tables VII Index of Schemes VIII Abbreviations IX Chapter 1 . Introduction 1 1.1 Introduction of iminosugars 1 1.1.1 Mechanism of retaining and inverting glycosidases 2 1.1.2 Transition state mimics of substrate 3 1.1.3 Several biologically interesting three-substituted piperidine -based molecules 4 1.1.4 Introduction of α-L-Iduronidase (IDUA) 5 1.2 Introduction of ring expansion 6 1.3 Previous work from our laboratory 9 1.4 Motivation 11 Chapter 2 . Results and Discussion 12 2.1 Design and strategy 12 2.2 Study of ring expansion and preparation of tri-substituted piperidine-based iminosugars 13 2.2.1 Study of the N-substituent effect 14 2.2.2 Study of the effect of temperature and solvent 18 2.2.3 Study of the configuration effect on the pyrrolidine system 19 2.3 Synthesis of three-substituted piperidine-based molecules (type I) 24 2.4 Biological evaluation 31 2.5 Conclusion 32 Chapter 3 . Experimental Section 33 3.1 General experimental procedure 33 3.2 Procedures and experimental data 34 References 57 Appendix 61

    1. Ichikawa, Y.; Igarashi, Y.; Ichikawa, M.; Suhara, Y., 1-N-Iminosugars:  potent and selective inhibitors of β-glycosidases. J. Am. Chem. Soc. 1998, 120, 3007-3018.
    2. (a) Paulsen, H., Carbohydrates containing nitrogen or sulfur in the “Hemiacetal” ring. Angew. Chem. Int. Ed. 1966, 5, 495–510; (b) Paulsen, H.; Todt, K., Monosaccharide mit stickstoffhaltigem ring, XII. uber monosaccharide mit stickstoffhaltigem Siebenring. Chem. Ber. 1967, 100, 512–520.
    3. (a) Winchester, B. G., Iminosugars: from botanical curiosities to licensed drugs. Tetrahedron: Asymmetry 2009, 20, 645–651; (b) Meloncelli, P. J.; Gloster, T. M.; Money, V. A.; Tarling, C. A.; Davies, G. J.; Withers, S. G.; Stick, R. V., D-glucosylated derivatives of isofagomine and noeuromycin and their potential as inhibitors of β-Glycoside hydrolases. Aust. J. Chem. 2007, 60, 549–565; (c) Yang, Y.; Zheng, F.; Bols, M.; Marinescu, L. G.; Qing, F. L., Synthesis of monofluorinated isofagomine analogues and evaluation as glycosidase inhibitors. J. Fluorine Chem. 2011, 132, 838–845; (d) Fan, J. Q.; Ishii, S., Pharmacological chaperone therapy for fabry disease. Springer Netherlands: 2010; pp 455–468.
    4. (a) Zechel, D. L.; Withers, S. G., Glycosidase mechanisms:  anatomy of a finely tuned catalyst. Acc. Chem. Res. 2000, 33, 11–18; (b) Lillelund, V. H.; Jensen, H. H.; Liang, X.; Bols, M., Recent developments of transition-state analogue glycosidase inhibitors of non-natural product. Origin. Chem. Rev. 2002, 102, 515–554.
    5. (a) Wang, G. N.; Xiong, Y.; Ye, J.; Zhang, L. H.; Ye, X. S., Synthetic N-alkylated iminosugars as new potential immunosuppressive agents. ACS Med. Chem. Lett. 2011, 2, 682–686; (b) Pandey, G.; Bharadwaj, K. C.; Khan, M. I.; Shashidhara, K. S.; Puranik, V. G., Synthesis of polyhydroxy piperidines and their analogues: a novel approach towards selective inhibitors of alpha-glucosidase. Org. Biomol. Chem. 2008, 6, 2587–2595; (c) Compain, P.; Martin, O. R.; Boucheron, C.; Godin, G.; Yu, L.; Ikeda, K.; Asano, N., Design and synthesis of highly potent and selective pharmacological chaperones for the treatment of Gaucher's disease. ChemBioChem 2006, 7, 1356–1359.
    6. (a) Hansen, A.; Tagmose, T. M.; Bols, M., Synthesis of a new potent alpha-fucosidase inhibitor. Chem. Commun. 1996, 2649–2650; (b) Reddy, Y. S.; Kancharla, P. K.; Roy, R.; Vankar, Y. D., Aza-Claisen rearrangement of 2-C-hydroxymethyl glycals as a versatile strategy towards synthesis of isofagomine and related biologically important azasugars. Org. Biomol. Chem. 2012, 10, 2760–2773.
    7. (a) Jespersen, T. M.; Dong, W.; Sierks, M. R.; Skrydstrup, T.; Lundt, I.; Bols, M., Isofagomine, a potent, new glycosidase inhibitor. Angew. Chem. Int. Ed. 1994, 33, 1778–1779; (b) Bols, M., 1-Aza sugars, apparent transition state analogues of equatorial glycoside formation/Cleavage. Acc. Chem. Res. 1998, 31, 1–8.
    8. Ichikawa, Y.; Igarashi, Y., An extremely potent inhibitor for β-galactosidase. Tetrahedron Letters 1995, 36, 4585–4586.
    9. Igarashi, Y.; Ichikawa, M.; Ichikawa, Y., Synthesis of a potent inhibitor of β-glucuronidase. Tetrahedron Lett. 1996, 37, 2707–2708.
    10. Terlato, N. J.; Cox, G. F., Can mucopolysaccharidosis type I disease severity be predicted based on a patient’s genotype? A comprehensive review of the literature. Genetic in medicine, 2003, 5, 286–294.
    11. Nieman, C. E.; Wong, A. W.; He, S.; Hopwood, J. J.; Withers, S. G., Family 39 α-l-Iduronidases and β-d-Xylosidases react through similar glycosyl−enzyme intermediates:  identification of the human iduronidase nucleophile. Biochemistry 2003, 42, 8054–8065.
    12. Fuson, R. C.; Zirkle, C. L., Ring enlargement by rearrangement of the 1,2-Aminochloroalkyl group; rearrangement of 1-Ethyl-2-chloromethylpyrrolidine to 1-Ethyl-3-chloropiperidine. J. Am. Chem. Soc. 1948, 70, 2760–2762.
    13. Cossy, J.; Dumas, C.; Pardo, D. G., A short and efficient synthesis of Zamifenacin a muscarinic M3 receptor antagonist. Bioorg. Med. Chem. Lett. 1997, 7 , 1343–1344.
    14. Mena, M.; Bonjoch, J.; Gomez Pardo, D.; Cossy, J., Ring expansion of functionalized octahydroindoles to enantiopure cis-Decahydroquinolines. J. Org. Chem. 2006, 71, 5930–5935
    15. (a) Durrat, F.; Sanchez, M. V.; Couty, F.; Evano, G.; Marrot, J., Ring expansion of 2-(α-Hydroxyalkyl)azetidines: A synthetic route to functionalized pyrrolidines. Eur. J. Org. Chem. 2008, 2008, 3286–3297; (b) Déchamps, I.; Pardo, D. G.; Cossy, J., Enantioselective ring expansion of prolinol derivatives. Two formal syntheses of (−)-swainsonine. Tetrahedron 2007, 63, 9082–9091.
    16. Hammer, C. F.; Heller, S. R.; Craig, J. H., Reactions of β-substituted amines—II: Nucleophilic displacement reactions on 3-chloro-1-ethylpiperidine. Tetrahedron 1972, 28, 239–253.
    17. Tsou, E.-L.; Yeh, Y.-T.; Liang, P.-H.; Cheng, W.-C., A convenient approach toward the synthesis of enantiopure isomers of DMDP and ADMDP. Tetrahedron 2009, 65, 93–100.
    18. Déchamps, I.; Gomez Pardo, D.; Cossy, J., Ring expansion induced by DAST: synthesis of substituted 3-fluoropiperidines from prolinols and 3-fluoroazepanes from 2-hydroxymethylpiperidines. Eur. J. Org. Chem. 2007, 2007, 4224–4234.
    19. Verhelst, S. H. L.; Paez Martinez, B.; Timmer, M. S. M.; Lodder, G.; van der Marel, G. A.; Overkleeft, H. S.; van Boom, J. H., A short route toward chiral, polyhydroxylated indolizidines and quinolizidines. J. Org. Chem. 2003, 68, 9598–9603.
    20. (a) Kovačková, S.; Dračínský, M.; Rejman, D., The synthesis of piperidine nucleoside analogs-a comparison of several methods to access the introduction of nucleobases. Tetrahedron 2011, 67, 1485–1500. (b) Hosoda N.; Tatsuya I.; Takimoto T.; Asami M., Enantioselective addition of diethylzinc to aldehydes catalyzed by (S)-1-Alkyl-2-(arylamino)methylpyrrolidine. Bull. Chem. Soc. Jpn. 2012, 85, 1014–1022.
    21. (a) Kobertz, W. R.; Bertozzi, C. R.; Bednarski, M. D., C-glycosyl aldehydes:  synthons for C-linked disaccharides. J. Org. Chem. 1996, 61, 1894–1897; (b) Xie, J., Synthesis of new sugar amino acid derivatives of D-glucosamine. Carbohydr. Res. 2003, 338, 399–406; (c) Ágoston, K.; Dobó, A.; Rákó, J.; Kerékgyártó, J.; Szurmai, Z., Anomalous Zemplén deacylation reactions of α- and β-d-mannopyranoside derivatives. Carbohydr. Res. 2001, 330, 183–190.
    22. Metro, T.-X.; Duthion, B.; Gomez Pardo, D.; Cossy, J., Rearrangement of beta-amino alcohols via aziridiniums: a review. Chem. Soc. Rev. 2010, 39, 89–102.
    23. (a) Pouliot, M. F.; Mahé, O.; Hamel, J. D.; Desroches, J.; Paquin, J. F., Halogenation of primary alcohols using a tetraethylammonium halide/[Et2NSF2]BF4 combination. Org. Lett. 2012, 14, 5428–5431; (b) Cochi, A.; Gomez Pardo, D.; Cossy, J., Access to optically active 3-azido- and 3-aminopiperidine derivatives by enantioselective ring expansion of prolinols. Org. Lett. 2011, 13, 4442–4445; (c) Déchamps, I.; Gomez Pardo, D.; Cossy, J., Ring expansion induced by DAST: synthesis of substituted 3-fluoropiperidines from prolinols and 3-fluoroazepanes from 2-hydroxymethylpiperidines. Eur. J. Org. Chem. 2007, 2007, 4224–4234.
    24. Cochi, A.; Gomez Pardo, D.; Cossy, J., Access to optically active 3-azido- and 3-aminopiperidine derivatives by enantioselective ring expansion of prolinols. Org. Lett. 2011, 13, 4442–4445.

    無法下載圖示 校內:2019-07-18公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE