簡易檢索 / 詳目顯示

研究生: 龔哲立
Gung, Je-Li
論文名稱: 電子構裝封膠之黏彈性模型及其製程翹曲之模擬
Viscoelastic Constitutive Model for Molding Compound and Its Application to Electronic Packaging Process Warpage Simulation
指導教授: 屈子正
Chiu, Tz-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 104
中文關鍵詞: 翹曲硬化動力學封膠黏彈性本構模型
外文關鍵詞: cure kinetics, viscoelastic constitutive model, warpage, molding compound
相關次數: 點閱:146下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於消費性電子產品的蓬勃發展,積體電路元件被要求具備更高的功能性及更輕薄小的體積,陣列式封裝因而成為最常被使用的封裝技術。再加上多晶片模組(multi-chip module, MCM)、系統級封裝(system in package, SiP)等技術的發展,封裝體的翹曲問題成為封裝產業關注的焦點之一。過大的翹曲將導致封裝體與其他元件之間連結的困難,降低產品生產良率。一般認為封裝體發生翹曲的原因來自於不同材料之間熱膨脹係數的不匹配,然而現代封裝產品大量使用熱固性高分子材料做為黏著、保護及基材,而熱固性高分子材料在高溫下會發生硬化反應,在硬化的過程會發生明顯地不可逆收縮。此一現象亦會造成封裝體的翹曲。

    以往翹曲分析多假設線彈性的材料行為,然而高分子材料具有明顯的黏彈性機械行為,且其機械性質與硬化度之間有明顯的關連性,為了正確地描述封裝體上使用之高分子材料的本構行為,以達到更準確的翹曲量預測,材料的硬化相關黏彈性模型是必須的。

    本文中將針對封膠以實驗方法建立其非線性的材料模型,其中包含了高分子材料的硬化動力學模型之建立、硬化相關的熱膨脹係數的量測,以及硬化相關的黏彈性本構行為的描述。建立出來的硬化相關模型將被套入有限元素法中,用來模擬製程中封裝體翹曲量的變化。最後,陰影疊影法將用來量測真實封裝體在製程中的翹曲量變化,並與模擬結果做一驗證。

    Warpage is one of the most critical issues for area-array IC package. Excessive warpage may lead to misregistration of electrical interconnection. Package warpage typically occurs after the post-mold curing process as a result of mold compound curing shrinkage and the coefficient of thermal expansion (CTE) mismatch among package various constituents such as silicon die, molding compound and multilayer substrate. In order to accurately predicting the warpage and stress in IC packages, it is critical to develop a cure-time-temperature dependent model for describing the constitutive behavior of molding compound.

    In this thesis, the experimental approach for characterizing cure kinetics, cure-dependent coefficient of thermal expansion and cure-dependent viscoelastic constitutive behavior of molding compound are presented. By using the nonlinear material properties of the molding compound, finite element analysis are conducted to model the warpage evolution during post-mold curing process. Shadow Moir experiments are conducted to measure package warpage and compared to the simulation results.

    摘要................................................. I 英文摘要............................................. II 誌謝................................................. III 目錄................................................. IV 表目錄............................................... VIII 圖目錄............................................... IX 符號說明............................................. XIII 第一章 緒論............................................. 1 1.1 電子封裝製程簡介.................................... 2 1.2 研究動機與方法...................................... 4 1.3 文獻回顧............................................ 5 1.3.1 硬化動力學........................................ 5 1.3.2 黏彈性行為........................................ 6 1.3.3 翹曲與應力分析.................................... 8 1.4 研究目的............................................ 9 1.5 本文架構............................................ 9 第二章 理論基礎......................................... 11 2.1 熱固性高分子材料之硬化反應.......................... 11 2.1.1 硬化動力學模型.................................... 12 2.2 高分子材料之線黏彈性行為............................ 14 2.2.1 與時間相關之行為及基本材料試驗.................... 14 2.2.2 線黏彈性材料之數學模型............................ 16 2.2.3 線黏彈性材料之本構關係............................ 19 2.2.4 溫度效應及時間-溫度重疊原理...................... 21 2.2.5 時間-硬化重疊原理................................ 23 第三章 熱示差掃瞄分析實驗與硬化動力學模型的建立......... 24 3.1 熱示差掃瞄分析實驗.................................. 24 3.1.1 樣品製備.......................................... 24 3.1.2 動態熱示差掃瞄分析實驗............................ 25 3.1.3 恆溫熱示差掃瞄分析實驗............................ 27 3.2 硬化動力學模型的建立................................ 30 3.2.1 動態模式之模型擬合................................ 30 3.2.2 恆溫模式之模型擬合................................ 32 第四章 熱機械性質的測定與黏彈性本構模型的建立........... 34 4.1 溫度及硬化相關之熱膨脹係數與熱機械分析實驗.......... 34 4.1.1 試片製備.......................................... 34 4.1.2 實驗設定及結果.................................... 34 4.2 鬆弛模數的量測與黏彈性本構模型的建立................ 36 4.2.1 複數模數及動態機械分析實驗........................ 36 4.2.1.1 複數模數........................................ 36 4.2.1.2 動態機械分析實驗設定及結果...................... 38 4.2.1.3 硬化及溫度相關鬆弛模數模型的建立................ 43 4.2.2 潛變試驗.......................................... 47 4.2.2.1 實驗設定及結果.................................. 47 4.2.2.2 模型建立........................................ 50 4.2.3 比較與討論........................................ 53 第五章 有限元素模型之建立及封裝製程模擬................. 56 5.1 幾何模型建構及網格化................................ 56 5.2 材料性質............................................ 59 5.3 數值模擬............................................ 60 5.3.1 完全硬化封膠材料模擬.............................. 61 5.3.2 製程模擬.......................................... 64 5.3.2.1 模擬流程與參數設定.............................. 64 5.3.2.2 翹曲量分析(DMA 模型).......................... 67 5.3.2.3 翹曲量分析(潛變試驗模型)...................... 69 5.3.2.4 翹曲量分析(DMA 修正模型)...................... 71 5.4 比較與討論.......................................... 73 第六章 陰影疊紋實驗與模型校正........................... 78 6.1 封裝體翹曲量量測.................................... 78 6.2 完全硬化試片翹曲量量測.............................. 82 6.3 模擬與實驗結果比較.................................. 83 6.4 討論................................................ 84 第七章 結論與未來研究方向............................... 87 7.1 結論................................................ 87 7.2 未來研究方向........................................ 88 參考文獻................................................ 89 附錄A 封膠材料本構模型及製程步驟ANSYS 程式.............. 92 附錄B 陰影疊紋法原理................................... 102

    [1] http://www.amkor.com./images/products/tssop_xsection.jpg
    [2] http://www.amkor.com./images/products/pbga-cross.gif
    [3] http://www.amkor.com./images/products/fccsp_xsection.jpg
    [4] R. B. R. van Silfhout, J. G. J. Beijer, K. Zhang, and W. D. van Driel, “Modelling methodology for linear elastic compound modelling versus visco-elastic compound modelling,” Proc. 6th. Int. Conf. Therm. and Mech. Simul. Exp. Microelectron. MicroSyst., EuroSimE2005, Berlin, Germany, 2005 p. 483.
    [5] K. E. J. Barrett, “Determination of rates of thermal decomposition of polymerization initiators with a differential scanning calorimeter,” J. Appl. Polym. Sci., Vol. 11, p. 1617, 1967.
    [6] K. Horie, H. Hiura, M. Sawada, I. Mita and H. Kambe, “Calorimetric investigation of polymerization reactions. Iii. Curing reaction of epoxides with amines,” J. Polym. Sci.: Part A-1, Vol. 8, p. 1357, 1970.
    [7] K. Horie, H. Hiura, M. Sawada, I. Mita and H. Kambe, “Calorimetric investigation of polymerization reactions. iv. curing reaction of polyester fumarate with styrene,” J. Polym. Sci.: Part A-1, Vol. 8, p. 2839, 1970.
    [8] M. R. Kamal and S. Sourour, “Kinetics and thermal characterization of thermoset cure,” Polym. Eng. Sci., Vol. 13, p. 59, 1973.
    [9] M. R. Kamal, “Thermoset characterization for moldability analysis,” Polym. Eng. Sci., Vol. 14, p. 231, 1974.
    [10] M. R. Kamal and M. E. Ryan, “The behavior of thermosetting compound in injection molding cavities, Polym. Eng. Sci., Vol. 20, p. 859, 1980.
    [11] J. M. Kenny and A. Trivisan, “Isothermal and dynamic reaction kinetics of high performance epoxy matrices,” Polym. Eng. Sci., Vol. 31, p. 1426, 1991.
    [12] R. C. Dunne, An Integrated Process Modeling Methodology and Module for Sequential Multilayered High-Density Substrate Fabrication for Microelectronic Packages, Ph. D. Dissertation, Georgia Technology Institute, 2000.
    [13] A. A. Skordos, and I. K. Partidge, ”Cure kinetics modeling of epoxy resins using a non-parametric numerical procedure,” Polym. Eng. Sci., Vol. 41, p. 793, 2001.
    [14] J. D. Ferry, Viscoealstic Properties of Polymer, 3rd edtion, John Wiley and Sons Inc., New York, 1980.
    [15] D. J. Plazek and I. C. Chay, “The evolution of the viscoelastic retardation spectrum during the development of an epoxy resin network,” J. Polym. Sci.: Part B: Polym. Phys., Vol. 29, p. 17, 1991.
    [16] Y. K. Kim and S. R. White, “Stress relaxation behavior of 3501-6 epoxy resin during cure,” Polym. Eng. Sci., Vol. 36, p. 2852, 1996.
    [17] S. L. Simon, G. B. Mckenna and O. Sindt, “Modeling the evolution of the dynamic mechanical properties of a commercial epoxy during cure after gelation,” J. Appl. Polym. Sci., Vol. 76, p. 495, 2000.
    [18] L. J. Ernst, C. van’t Hof, D. G. Yang, and M. S. Kiasat, ”Determination of viscoelastic properties during the curing process of underfill materials,” Proc. Electron. Compon. Technol. Conf., ECTC2000, Las Vegas, 2000, p. 1070.
    [19] L. C. Brison and T. S. Gates, Viscoelastic and Aging of Polymer Matrix Composites, Vol. 2: Comprehensive Composite Material, Pergamon Press, 2006.
    [20] D. G. Yang, K. M. B. Jansen, L. J. Ernst, G. Q. Zhang, H. J. L. Bressers, and J. H. J. Janssen, ”Effect of filler concentration of rubbery shear and bulk modulus of molding compound,” Microelectron. Reliab., Vol. 47, p. 233, 2007.
    [21] 洪立群,2004,IC 封裝元件翹曲分析之研究,博士論文,國立成功大學。
    [22] D. G. Yang, K. M. B. Jansen, L. J. Ernst, G. Q. Zhang, W. D. van Drief, and H. J. L. Bressers, “Modeling of cure-induced warpage of plastic ic packages,” Proc. 5th. Int. Conf. Therm. and Mech. Simul. Exp. Microelectron. MicroSyst., EuroSimE2004, Brussels, Belgium, 2004, p. 33.
    [23] M. Zarrelli, I. K. Partidge, and A. D’Amore, ”Warpage induced in bi-meterial specimens: Coefficient of thermal expansion, chemical shrinkage and viscoelastic modulus evolution during cure,” Compos. Part A: Appl. Sci. Manuf., Vol. 37, p. 565, 2006.
    [24] MATLAB, R2008a, The MathWorks, Inc., 2008.
    [25] D. R. Jones, C. D. Perttunen, and B. E. Stuckman, “Lipschitzian optimization without the Lipschitz constant,” J Optim. Theory Appl., Vol. 79, p. 157, 1993.
    [26] K. P. Menard, Dynamic Mechanical Analysis: A Practical Introduction, CRC Press, New York, 1999.
    [27] M. Hojjati, A. Johnston, S. van Hoa and J. Denault, “Viscoelastic behavior of cytec fm37 adhesive during cure,” J. Appl. Polym. Sci., Vol. 91, p. 2548, 2004.
    [28] R. R. Hill, S. V. Muzumdar, and L. James Lee, “Analysis of volumetric changes of unsaturated polyester resins,” Polym. Eng. Sci, Vol.35, p. 852, 1995.
    [29] ANSYS, ver. 11.0, ANSYS Inc., 2008.
    [30] Y. Wang, and P. Hassell, “Measurement of thermally induced warpage of BGA packages/substrates using phase-stepping shadow Moir,” Proc. Electron Pack. Technol. Conf., (EPTC1997), Singapore, 1997, p. 283.

    下載圖示 校內:2009-07-29公開
    校外:2009-07-29公開
    QR CODE