簡易檢索 / 詳目顯示

研究生: 郭亦哲
Guo, Yi-Zhe
論文名稱: 矽穿孔結構之溫升效應下脫層及破壞之研究
Study on Thermal-induced Delamination and Fracture of Through Silicon Via structures.
指導教授: 林仁輝
Lin, Jen-Fin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 134
中文關鍵詞: 矽穿孔熱應力時間相依介電層崩潰數值模擬
外文關鍵詞: Through silicon via (TSV), TDDB, Thermal stress
相關次數: 點閱:147下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 三維封裝技術是目前被認定為是超越摩爾定律,持續實現電子封裝結構小型化、高密度以及多功能化的解決方案。三維封裝是一種利用堆疊的方式將各個不同功能的元件整合在一起,而其中矽穿孔技術為三維封裝電路中之垂直通道,此技術能夠縮短彼此間之傳輸距離,也能提供內部電導通,以及熱導通的功能。然而當尺寸逐漸縮小時,因TSV結構中,材料間熱膨脹係數不匹配的效應,造成在外加溫度負載下,所產生的散熱問題與熱應力集中的現象,導致元件失效,仍是目前所需克服的問題。
    TSV結構製程技術主要分為導孔形成、導孔填充、晶圓薄化以及晶圓接合四大製程。本文之研究以探討在即將晶圓薄化前,矽穿孔之盲孔結構之熱分析以及電性分析;由於TSV結構的關係,導致在溫度負載下造成的熱應力集中問題,進而發生失效或破壞。透過實驗的方式並搭配實驗室裡的奈米壓痕專用超高精度樣品環境控制腔體,即時擷取材料受熱的影響及產生的行為,並找出元件產生破壞的原因。
    本實驗之矽穿孔結構,製作方式以感應式耦合蝕刻來製作導孔、高密度電漿化學氣相沉積沉積二氧化矽,以及雙電子槍蒸鍍機填入鈦以及銅膜,利用研磨拋光機去除表面銅膜,利用直流量測系統量測電容-電壓曲線,配合掃描式電子顯微鏡來找出二氧化矽之介電層厚度。
    熱破壞實驗-時間相依介電層崩潰分別對經觀察以及換算後之二氧化矽介電層厚度,分別為152nm,400nm以及860nm來做測試,發現當溫度越高時其崩潰時間(TBD)較早發生,且崩潰時間將隨著厚度的增加而增。其主要原因來自於,當介電層厚度越厚,所受熱影響的電載子較不容易因穿隧行為而使介電層發生失效,而當金屬層受到高溫而冷卻到室溫時,因其晶粒成長,使得晶粒與晶粒間的縫隙減少,導致金屬層與矽之間產生脫層的現象。而在矽穿孔結構角落部分,受到因受熱應力的影響,使得薄膜與薄膜間產生裂痕,金屬層有機會經擴散的方式進入介電層破壞整體的結構電性。

    Recently, through silicon via structure (TSV) technology has become important in three-dimension technology, because it provides the short distance connection can also be internal electrical conduction and thermal conduction. TSV structure of process technology divided into via forming, via filling, wafer thinning and wafer bounding .
    This study focus on the modeling establishment for evaluation of the thermal failure arising at the Cu constrained in a blind through silicon via (TSV) structure before wafer thinning. Due to coefficient of thermal expansion mismatch between the materials, leading to thermal-mechanical stress accumulation problems by thermal load, and thus cause failure or damage. Use experiment of the thermal test- Time Dependent Dielectric Breakdown (TDDB) to observe current change with time, for 152nm、400nm and 860nm dielectric layer thickness, respectively .

    摘要 I EXTENDED ABSTRACT III 致謝 VII 目錄 VIII 圖目錄 XIII 表目錄 XVIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.3 研究動機 6 1.4 研究架構 8 第二章 基本理論 9 2.1 矽穿孔(THROUGH SILICON VIAS , TSV) 9 2.1.1 TSV 介紹 9 2.1.2 TSV導孔形成 9 2.1.3 TSV導孔填充 10 2.2 元件可靠度理論 12 2.2.1 介電層可靠度分析 12 2.2.2 時間相依介電層崩潰行為(Time Dependent Dielectric Breakdown,TDDB) 13 2.2.3 平均失效時間(Mean Time To Failure, MTTF) 15 2.3 儀器理論 17 2.3.1 微影原理 17 2.3.2 電漿理論(Plasma Theory) 19 2.3.2.1 磁控濺鍍(Magnet Sputter)[23] 21 2.3.2.2 感應式耦合(Inductively-Coupled Plasma, ICP)[24] 23 2.3.2.3 高密度化學氣相沉積(High Density Plasma Chemical Vapor Deposition, HDP-CVD) 25 2.3.3 電鍍原理(Plating Theory) 26 2.3.4 奈米壓痕理論(Nano Indentation Theory) 28 2.3.4.1奈米級電接觸電阻測量工具(Nano Electrical Conduct Resistance,Nano ECR) 28 2.4 數值模擬理論 32 2.4.1 邊界條件之設置 33 2.4.2 失效準則 36 2.4.3 破壞應變能密度 37 第三章 實驗規劃 50 3.1 實驗目的 50 3.2 實驗設備與方法 51 3.2.1 磁控濺鍍(Magnetron Sputter) 51 3.2.2 表面粗度儀(Surface Profilometer) 52 3.2.3 旋轉塗佈儀(Spin Coater) 53 3.2.4 雙面對準/UV光感奈米壓印機(Double-Side Mask Aligner/UV Imprinter) 54 3.2.5 感應式耦合蝕刻(Inductive Coupled Plasma Etching System) 55 3.2.6 高密度電漿化學氣相沉積(High Density Plasma Chemical Vapor Deposition,HDP-CVD) 57 3.2.7 雙電子槍蒸鍍(Dual E-beam Evaporator) 59 3.2.8 高解析場發式電子顯微鏡 60 3.2.9 奈米壓痕試驗機(Nano Indentation Test) 62 3.2.10 直流量測系統(DC Measure System) 64 3.2.11 研磨機(Mechanical Polish) 65 3.2.12 雙束型聚交離子束(Dual Beam-Focused Ion Beam, DB-FIB) 66 3.3 實驗流程 66 3.3.1 試片製備流程 66 3.3.2 試片檢測 68 3.3.2.1 試片檢測結果 68 3.3.3 熱破壞實驗 68 第四章 結果與討論 85 4.1 電容量測 86 4.1.1 電容-電壓曲線 86 4.1.2 電容與介電層厚度 88 4.2 熱破壞實驗 89 4.2.1 ANSYS/LS-DYNA數值模擬 89 4.2.2 時間相依介電層崩潰實驗(Time Dependent Dielectric layer Breakdown,TDDB) 92 4.2.3 數值模擬以及實驗結果 94 4.2.4 聚焦離子束切割(Focus Ion Beam,FIB) 96 第五章 結論與未來展望 127 5.1 結論 127 5.2 未來展望 128 參考文獻 129

    [1] I. Z. M. Programs, “3D System Integration,” pp. 1–9, 2006.
    [2] J. Bhardwaj, H. Ashraf, and a McQuarrie, “Dry Silicon Etching for MEMS,” Int. Symp. Microstruct. Microfabr. Syst., pp. 118–130, 1997.
    [3] C.-K. Chung, “Geometrical pattern effect on silicon deep etching by an inductively coupled plasma system,” J. Micromechanics Microengineering, vol. 14, pp. 656–662, 2004.
    [4] Y. C. Hsin, C. C. Chen, J. H. Lau, P. J. Tzeng, S. H. Shen, Y. F. Hsu, S. C. Chen, C. Y. Wn, J. C. Chen, T. K. Ku, and M. J. Kao, “Effects of etch rate on scallop of through-silicon vias (TSVs) in 200mm and 300mm wafers,” Proc. - Electron. Components Technol. Conf., no. 1, pp. 1130–1135, 2011.
    [5] N. Ranganathan, L. Ebin, L. Linn, L. W. S. Vincent, O. K. Navas, V. Kripesh, and N. Balasubramanian, “Integration of high aspect ratio tapered silicon via for through-silicon interconnection,” Proc. - Electron. Components Technol. Conf., no. c, pp. 859–865, 2008.
    [6] S. K. Praveen, H. W. Tsan, and R. Nagarajan, “Conformal low -temperature dielectric deposition process below 200??C for TSV application,” 2010 12th Electron. Packag. Technol. Conf. EPTC 2010, no. 65, pp. 27–30, 2010.
    [7] T. C. Chai, X. Zhang, J. H. Lau, C. S. Selvanayagam, P. Damaruganath, Y. Y. G. Hoe, Y. Y. Ong, V. S. Rao, E. Wai, H. Y. Li, E. Bin Liao, N. Ranganathan, K. Vaidyanathan, S. Liu, J. Sun, M. Ravi, C. J. Vath, and Y. Tsutsumi, “Development of large die fine-pitch Cu/low-??; FCBGA package with through silicon via (TSV) interposer,” IEEE Trans. Components, Packag. Manuf. Technol., vol. 1, no. 5, pp. 660–672, 2011.
    [8] O. Lühn, C. Van Hoof, W. Ruythooren, and J. P. Celis, “Barrier and seed layer coverage in 3D structures with different aspect ratios using sputtering and ALD processes,” Microelectron. Eng., vol. 85, no. 10, pp. 1947–1951, 2008.
    [9] C. S. Selvanayagam, J. H. Lau, X. Zhang, S. K. W. Seah, K. Vaidyanathan, and T. C. Chai, “Nonlinear thermal stress/strain analyses of copper filled TSV (Through Silicon Via) and their flip-chip microbumps,” IEEE Trans. Adv. Packag., vol. 32, no. 4, pp. 720–728, 2009.
    [10] N. Tanaka, T. Sato, Y. Yamaji, T. Morifuji, M. Umemoto, K. Takahashi, and M. Effects, “Mechanical effects of copper through-vias in a 3D die-stacked module,” Electron. Components Technol. Conf. 2002. Proceedings. 52nd, no. 2, pp. 473–479, 2002.
    [11] K. H. Lu, S. K. Ryu, Q. Zhao, X. Zhang, J. Im, R. Huang, and P. S. Ho, “Thermal stress induced delamination of through silicon vias in 3-D interconnects,” Proc. - Electron. Components Technol. Conf., pp. 40–45, 2010.
    [12] K. Matsumoto, T. Kinoshita, T. Kawakami, S. Kohara, Y. Orii, T. Hori, F. Yamada, and M. Kada, “Thermal Stresses of Through Silicon Vias and Si Chips in Three Dimensional System in Package,” J. Electron. Packag., vol. 134, no. 2, p. 20903, 2012.
    [13] G. Katti, A. Mercha, M. Stucchi, Z. Tokei, D. Velenis, J. Van Olmen, C. Huyghebaert, A. Jourdain, M. Rakowski, I. Debusschere, P. Soussan, H. Oprins, W. Dehaene, K. De Meyer, Y. Travaly, E. Beyne, S. Biesemans, and B. Swinnen, “Temperature dependent electrical characteristics of Through-Si-Via (TSV) interconnections,” 2010 IEEE Int. Interconnect Technol. Conf. IITC 2010, pp. 26–28, 2010.
    [14] B. Bhushan, C. H. Toh, A. Chan, I. Ow, L. Y. Wong, A. R. Barman, S. Sudheeran, C. Rao, W. M. Abdul, J. Chew, J. Vijayen, U. Mahajan, D. Ericson, N. Kumar, S. Ramaswami, and A. Sundarrajan, “Electrical parametric and reliability of 5??50um TSVs for 3D IC,” 2014 IEEE Int. Interconnect Technol. Conf. / Adv. Met. Conf. IITC/AMC 2014, no. 1, pp. 363–366, 2014.
    [15] S. H. Seo, J. S. Hwang, J. M. Yang, W. J. Hwang, J. Y. Song, and W. J. Lee, “Failure mechanism of copper through-silicon vias under biased thermal stress,” Thin Solid Films, vol. 546, pp. 14–17, 2013.
    [16] H. J. Choi, S. M. Choi, M. S. Yeo, S. D. Cho, D. C. Baek, and J. Park, “An experimental study on the TSV reliability: Electromigration (EM) and time dependant dielectric breakdown (TDDB),” 2012 IEEE Int. Interconnect Technol. Conf. IITC 2012, pp. 4–6, 2012.
    [17] 詹印豐、顏錫鴻、許明哲, “TSV製程技術整合分析,” 2010.
    [18] S. C. Sun, “CVD and PVD transition metal nitrides as diffusion barriers for Cu metallization,” in Solid-State and Integrated Circuit Technology, 1998. Proceedings. 1998 5th International Conference on, 1998, pp. 243–246.
    [19] A. Acovic, G. La Rosa, and Y.-C. Sun, “Reliability Physics of Advanced Electron DevicesA review of hot-carrier degradation mechanisms in MOSFETs,” Microelectron. Reliab., vol. 36, no. 7, pp. 845–869, 1996.
    [20] A. Martin, P. O’Sullivan, and A. Mathewson, “Dielectric Reliability Measurement Methods: A Review,” Microelectron. Reliab., vol. 38, no. 1, pp. 37–72, 1998.
    [21] J. R. Black, “Electromigration failure modes in aluminum metallization for semiconductor devices,” Proc. IEEE, vol. 57, no. 9, pp. 1587–1594, 1969.
    [22] A. Marzuki, “Chapter 7,” PhD, vol. 7, p. 160189, 2005.
    [23] 郭鎧瑋, “磁控濺鍍機 SOP,” 2006.
    [24] 沈秋燕, “EIS-700 ICP 奈米深蝕刻系統 SOP,” 2013.
    [25] Oliver.W.C. and Pharr.G.W, “Measurement of hardness and elastic modulus by instrumented indentation : Advances in understanding and refinements to methodology,” J. Mater. Res., vol. 19, no. 1, pp. 3–20, 2004.
    [26] C. Huang, Q. Chen, D. Wu, and Z. Wang, “High aspect ratio and low capacitance through-silicon-vias (TSVs) with polymer insulation layers,” Microelectron. Eng., vol. 104, pp. 12–17, 2013.
    [27] Knickerbocker JU, Andry PS, Dang B, Horton RR, Interrante MJ, et al. IBM J Res Dev 2008;52:553–69
    [28] Garrou P, Bower C, Ramm P. Handbook of 3D integration. Wiley-VCH; 2008.
    [29] H.H.Berger,J.Electrochem.Soc.,1972,119(4),507-514
    [30] G. R. Johnson, W. H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Eng. Fract. Mech., 21 (1985) 31-48.
    [31] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (1989) Reading, MA: Addison-Wesley.
    [32] 应用材料(中国)公司, “高密度等离子体化学气相淀积(HDP CVD)工艺,” 中国集成电路, no. 93, pp. 61–65, 2007.

    無法下載圖示 校內:2021-07-14公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE