| 研究生: |
張能傑 Chang, Neng-Chieh |
|---|---|
| 論文名稱: |
利用磁控濺鍍成長氧化鋅奈米點及其形貌,成分與性質分析 ZnO nanodots grown by RF magnetron sputter:morphology, composition and properties |
| 指導教授: |
劉全璞
Liu, Chuan-Pu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 氧化鋅 、磁控濺鍍 、奈米點 |
| 外文關鍵詞: | magnetron sputter, nanodot, zinc oxide |
| 相關次數: | 點閱:42 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,氧化鋅奈米材料逐漸受到產學業界的重視,因為低維度氧化鋅奈米材料展現出與塊體材料截然不同的特性,但現階段氧化鋅的成長與製作,都以化學氣相沉積為主,缺乏一些簡單且穩定的物理氣相沉積製程來製作氧化鋅的奈米結構。
本實驗一開始使用射頻濺鍍的方法,以ZnO為靶材,通入不同氣體背景條件下分成兩部分實驗,第一部份通入的氣體為80%Ar和20%H2的混合氣體,施加一連續的基板負偏壓,從-600V到0V條件的狀況下,製作Zn/ZnO奈米點結構,第二部份通入的氣體為60%Ar和40%02的混合氣體,施加-300V的基板偏壓,成長奈米點結構。
在分析方面,奈米點結構主要利用AFM和TEM去分析,利用AFM去了解製作出來奈米點的表面形貌和奈米點大小密度,而TEM可以了解奈米點的微結構,利用HR-TEM技術分析奈米點缺陷和跟成長基板的關係,成分方面利用STEM-EDS、STEM-EELS、ESCA技術去了解不同條件下的奈米點成份變化,輔以拉曼圖譜了解奈米點原子之間鍵結情形,最後,利用PL探討不同條件下奈米點發光狀況跟缺陷。
實驗結果顯示我們成功利用射頻濺鍍的方法製作出ZnO奈米點,PL也顯示出ZnO奈米點的發光特性。
Recently, low dimensional ZnO materials have been popularly investigated because of remarkable quantum confinement effects and optoelectrical properties than the
bulk counterpart. Until now, ZnO nanostructures are almost fabricated by chemical vapor deposition、hydrothermal synthesis、PLD and MBE...etc. But these methods are either poor crystalline or high expense. So we want to fabricate ZnO nanostructures in a simple and reliable process by physical vapor deposition.
RF sputtering was used with ZnO as the target under different mixture gas ambient. Two types of samples were prepared. While the first type employed 20%H2 +80%Ar mixed gas as ambient, with substrate bias varied from -600V to 0V to fabricate Zn/ZnO nanodots structure, the second type employed 40%02 +60%Ar mixed gas as ambient ,with substrate bias of -300V to fabricate nanodots structure.
In terms of characterization, the structure of nanodots is analyzed by AFM and TEM. The surface morphology and dot density is measured by AFM. Microstructure is characterized by TEM. The defects of the nanodots with microstructure relationship with substrate can be characterized by HR-TEM technique. We also use STEM-EDS、STEM-EELS and ESCA methods to analyze the composition of nanodots that grown by different experiment conditions. Finally, the optical characteristic and defects of nanodots are analyzed by Raman and Photoluminescence.
The results show that we successfully grow the single crystallite ZnO nanodots by magnetron sputtering with various optical characteristics.
[1] http://www.bhkaec.org.hk/bookman/hk24.htm.
[2] K. K. Kim, N. Koguchi, Y. W. Ok, T. Y. Seong, and S. J. Park, Appl. Phys. Lett.
84, 3810 (2004)
[3] ZL Wang - J. Phys.: Condens. Matter, (2004)
[4] Y. Qiu, P. Gogna, S. Forouhar, A. Stintz, L.F. Lester, Appl. Phys. Lett.
79,3570 (2001)
[5] S.D. Chen, Y.Y. Chen, S.C. Lee, Appl. Phys. Lett. 86 , 253104.(2005)
[6] R.J. Schoelkopf, P. Wahlgren, A.A. Kozhevnikov, P. Delsing,D.E. Prober,
Science 280,1238 (1998)
[7] KK Kim, N Koguchi, YW Ok, TY Seong, SJ Park - Applied Physics Letters,
(2004)
[8] S.-W. Kim, T. Kotani, M. Ueda, S. Fujita, S. Fujita, Appl. Phys. Lett. 83,3593
(2003)
[9] Z. Bi, J.W. Zhang, and X.D.Yang, J. Crys Growth 303, 407 (2007)
[10] J.K. Lee, C.R. Tewell, R.K. Schulze, M. Nastasi, D.W. Hamby, D.A. Lucca,
H.S. Jung, K.S. Hong, Appl. Phys. Lett. 86 ,183111(2005)
[11] 張立德, 牟季美, “奈米材料與奈米結構”, 滄海書局 (2002)
[12] A. D. Yoffe, Low-dimensional systems: quantum size effects and electronic
properties of semiconductor microcrystallites (zero-dimensional systems) and
some quasi-two-dimensional systems., Advances in Physics,42 ,173 (1993)
[13] W. W. Yu, X. Peng, “Formation of High-Quality CdS and Other II-VI
Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable
Reactivity of Monomers” Angew. Chem. Int. Ed. 41(13), 2368 (2002)
[14] Y. Wang, N. Herron, “Nanometer-sized semiconductor clusters: materials
synthesis, quantum size effects, and photophysical properties” J. Phys.
Chem. 95, 525 (1991)
[15] R. T. Senger and K. K. Bajaj, Phys. Rev. B 68, 045313 (2003)
[16] H. Hirayama, K. Matsunga, M. Asada, and y. Suematsu, “Lasing action
of GaInAs/GaInAsP/Inp tensile-strained quantum box lasers, ”Electro.
Lett.30, 142 (1994)
[17] Quantum dots, E. Borovitskaya, M.S. Shur (2002)
[18] K.S Sree Harsha,Principles of Physical Vapor Deposition of Thin
Films,ELSEVIER, USA (2006)
[19] B. Meyer and D. Marx, Phys. Rev. B 67, 035403 (2003)
[20] W. S. Hu, Z. G. Liu, R. X. Wu, Y.-F. Chen, W. Ji, T. Yu, and D. Feng, Appl.
Phys.Lett. 71, 548 (1997)
[21] 邱文鼎, ”新穎氧化鋅奈米線生長技術”,成功大學碩士論文(2003)
[22] B.H.Choi and H.B.Im, Thin Solid Films 193/194,712 (1990)
[23] 陳慶鍾, ”ZnO 奈米線的合成及性質研究”,台灣大學碩士論文(2002)
[24] Michael H. Huang, “Room-Temperature Ultraviolet Nanowires Nanolasers”,
Science, 292,1897-1899 (2001)
[25] DC Look, B Claflin - Physica Status Solidi(b) (2004)
[26] B. Xiang, P. Wang, X. Zhang, and S.A. Dayeh, Nano Lett., 7, 323 (2007)
[27] T. Makino, A. Tsukazaki, M. Kawasaki, A. Ohtomo, and H. Koinuma, Japn. J.
Appl.Phys. 45, 6346 (2006)
[28] S.T. Tan, X.W. Sun, and X.H. Zhang, J. Cryst. Growth 290, 518 (2006)
[29] S.W. Kim, S. Fujita, and S. Fujita, Appl. Phys. Lett. 81, 5036 (2002)
[30] S. Fujita, S.W. Kim, M. Ueda, and S. Fujita, J. Cryst. Growth 272, 138 (2004)
[31] C.H. Bae, S.M. Park, S.C.Park and J.S. Ha, Nanotechnology 17, 381 (2006)
[32] L. Chen, Z.Q. Chen, and X.Z. Shang, Solid State Commu. 137, 561 (2006)
[33] Y. Chen, Z. Zhu, and D.M. Bagnall, J. Cryst. Growth 184/185, 269 (1998)
[34] Y.H. Tong, Y.C. Liu, S.X. Luand, L. Dong, S.J. Chen, and Z.Y. Xiao , J.
Sol-Gel Sci.Techn. 30, 157 (2004)
[35] K. Sue, K. Kimura, K. Murata, and K. Arai, J. Supercrit. Fluid. 30, 325 (2004)
[36] J. Zhenguo, Z. Shichao, W. Chao, and K. Liu, Mat. Sci. Eng. 117, 63 (2005)
[37] 陳彥宏,國立清華大學材料科學與工程學系碩士論文,2001
[38] X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W.Xu, X.
W. Fan, X. G. Kong, “Temperature dependence of excitonic luminescence from
nanocrystalline ZnO films”, J. Lumin. 99, 149 (2002)
[39] D. R. Vij, N. Singh,“ Luminescence and Related Properties of Ⅱ-Ⅵ
Semiconductors "Nova Science Publishers, N. Y., 1998
[40] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt,B. E.
Gnade, “Mechanisms behind green photoluminescence in ZnO phosphor
powders”, J. Appl. Phys. 79 ,7983 (1996)
[41] B. X. Lin, Zhuxi Fu, Yunbo Jia, “Green luminescent center in undoped zinc
oxide films deposited on silicon substrates”, Appl. Phys.Lett. 79,943 (2001)
[42] http://en.wikipedia.org/wiki/Raman_spectroscopy
[43] D. A. Skoog, F. J. Holler, and T. A. Nieman, Principles of Instrucmental Analysis, fifth edition (2002)
[44] W. Hayes and R. Loudon, Scattering of Light in Crystals _Wiley, New York,
(1978)
[45] Light Scattering in Solid I, edited by M. Cardona _Springer, New York (1983)
[46] L. Bergman, X. B. Chen, J. Huso, J. L. Morrison, and H. Hoeck,“Raman
scattering of polar modes of ZnO crystallites”, J. Appl. Phys., vol. 98, pp.
093507-1-0935070-4 (2005)
[47] K. A. Alim, V. A. Fonoberov,. M. Shamsa, and A. Balandin, “Micro-Raman
investigation of optical. phonons in ZnO nanocrystals,” J. Appl. Phys. vol. 97
[48] J. L. Vossen and W. Kern, Thin Film Processes, Academic Press, New York,
(1978) 14-24
[49] D. S. Rickerby and A. Mattews, Advanced Surface Coatings. Chapman and
Hall, New York, (1992) 94-95
[50] The Material Science of Thin Film, Milton Ohring ( 2002)
[51] 江政忠,真空技術與應用,行政院國家科學委員會精密儀器發展中心,
新竹,373-375 (2001)
[52] Brian Chapman,Glow Discharge Processes,Wiley, Canada (1980)
[53] JEOL與捷東公司資料
[54] 台灣大學材料系楊哲人教授演講資料
[55] B. Kumar, et al., “Photoluminescence and multiphonon resonant Raman.
scattering in low-temperature grown ZnO nanostructures”, App. Phys. Lett. 89,
071922 (2006)
[56] TC Damen, SPS Porto, B Tell - Physical Review, APS (1966 )
[57] Brian Chapman,Glow Discharge Processes,Wiley, Canada (1980)
[58] Y. Gao, T. Fujii, and R. Sharma, Jap. J. Appl. Phys. 43, L637 (2004)