簡易檢索 / 詳目顯示

研究生: 鄭世賢
Cheng, Shih-Hsien
論文名稱: 添加金屬於類鑽碳膜之結構及其性質研究
Investigation of structure and properties in diamond-like carbon film with metal additive
指導教授: 黃肇瑞
Huang, Jow-Lay
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 93
中文關鍵詞: 陰極電弧沈積法類鑽碳含銅的類鑽碳膜電子場發射
外文關鍵詞: a-C:Cu film, Cathodic arc deposition, Field emission, Diamond-Like Carbon (DLC)
相關次數: 點閱:67下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於類鑽碳擁有類似鑽石的性質,如耐磨耗、化學抗腐蝕及高熱傳導性等等,加上鍍膜製程簡單,被視為極有潛力的材料之一。本研究嘗試以陰極電弧沈積法的方式,將銅與石墨共鍍形成含銅的類鑽碳膜,藉由改變銅電弧電流量來控制銅的含量。目的在於探討銅的加入對於類鑽碳膜的表面型態、結構以及場發射性質之影響。
    實驗結果顯示隨著銅含量增加,發現粗糙度提高並且表面尖錐數量增加及細化的現象,但銅在膜中分佈均勻。而且經由ESCA分析銅碳鍵結,發現沒有形成銅碳化合物,並且類鑽碳膜中sp2鍵結增多,使其ID/IG比值增加,但卻因為銅導入類鑽碳膜中使得壓應力獲得釋放,造成拉曼光譜的G peak往低波數偏移。含銅的類鑽碳膜電阻率下降至2.47×10-3 Ω-cm,降低了電子在膜內傳輸的阻抗,因此改善了電子場發射的性質,並起始電場強度從9.6V/μm降低到2.5V/μm。

    Diamond-Like Carbon (DLC) films recently are regarded as one of the most promising materials because its simplification of the manufacturing process. In addition, like diamond DLC exhibits excellent characteristics, such as, wear resistance, chemical erosion resistivity, and high heat conductivity etc. In this study, cathodic arc deposition was used to synthesize a-C:Cu films with Cu metal and graphite targets. The content of Cu in the a-C:Cu films was controlled by different arc current of Cu target.
    The results show that the roughness increased with the Cu content increasing and surface nanotips became more and finer in all a-C:Cu films. However, the distribution of Cu in the films was uniform. The binding energy analysis from ESCA spectra of C 1s and Cu 2p for a-C:Cu films indicated that there was no evidence of carbide formation and the effect of Cu addition has promoted the C sp2 bonding. This condition corresponds with the Gaussian fitting results of ID/IG value. The shift of G peak position toward lower wavenumber is because of the releasing of compressive stress in a-C:Cu films by the addition of Cu. The lowest resistance of the films is 2.47×10-3 Ω-cm and the field emission test results show that the electron emission properties could be improved by reducing the applied electric turn-on field from 9.6 to 2.5 V/mm. The reason is that the resistance of the electron transportation in a-C:Cu films was reduced by the addition of Cu.

    中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅲ 總目錄 Ⅶ 圖目錄 Ⅹ 表目錄 XIV 第一章 緒論 1 1-1 前言 1 1-2 實驗動機 3 第二章 理論基礎與前人研究 5 2-1 類鑽碳 5 2-1-1 類鑽碳膜之組成 5 2-1-2類鑽碳膜之製備方法 17 2-1-3 類鑽碳改質膜 22 2-2 陰極電弧蒸鍍原理(Cathodic Arc Deposition) 23 2-3 拉曼光譜於類鑽碳膜之應用原理 27 2-4 電子場發射理論 33 第三章 實驗方法與步驟 36 3-1 實驗流程 36 3-2 實驗設備 37 3-3 實驗材料 39 3-4 實驗步驟與方法 40 3-4-1 基材前處理 40 3-4-2 濺鍍步驟及條件 40 3-5 鍍層分析及量測 42 3-5-1 膜厚分析及表面形態的觀察(SEM) 42 3-5-2表面形態的觀察(AFM) 42 3-5-3 電阻率量測(4-point probe) 42 3-5-4 成份及縱深分析(AES) 43 3-5-5 成份及鍵結形態分析(ESCA) 44 3-5-6 Raman鍵結形態分析 44 3-5-7 I-V之測量分析 45 第四章 結果與討論 47 4-1 鍍膜之成長特性 47 4-1-1 膜厚及成分分析 47 4-1-2 鍍膜縱深成分分析 53 4-1-3 表面型態觀察 55 4-1-4 電阻率 62 4-2 鍍膜之微結構 66 4-2-1 鍵結型態分析 66 4-2-2 鍵結型態分析 71 4-3 類鑽碳鍍膜之場發射特性 79 第五章 總結論 85 參考文獻 87 自述 93

    1. S.H. Yang, M. Yokoyama, “Electron emission behaviors of polycrystalline diamond-coated silicon emitters,” Jpn. J. Appl. Phys. 38, 209-212(1999).
    2. A. Grill, “Electrical and optical properties of diamond-like carbon” Thin Solid Films, 355-356, 189-193(1999).
    3. 錢國基,產業經濟第201卷,民87.05,頁105-109。
    4. H. O. Pierson, Chapter 2, “The element carbon” in Handbook of carbon, graphite, diamond and fullerenes, Noyes publications, p.11-41 (1993).
    5. B. S. Satyanarayana, A. Hart, W. I. Milne and J. Robertson, “Field emission from tetrahedral amorphous carbon”, Appl. Phys. Lett., 71 1430(1997).
    6. G.D. Lian, E.C. Dickey, M. Ueno, M.K. Sunkara. “Ru-doped nanostructured carbon films” Diamond Relat. Mater. 11, 1890-1896 (2002).
    7. G.Y. Chen, J.S. Chen, Z. Sun, Y.J. Li, S.P Lau, B.K. Tay, J.W. Chai, “Field emission properties and surface structure of nickel containing amorphous carbon” App. Surf. Sci. 180, 185-190(2001).
    8. H. O. Pierson, Chapter 14, “Diamond-like carbon (DLC)” in Handbook of carbon, graphite, diamond and fullerenes, Noyes publications, p.337-355(1993).
    9. W. D. Kingery, H. K. Bowen and D. R. Uhlmann, Introduction to Ceramics, Chapter 2, John Wiley & Sons, Canada, 1991.
    10. 余樹貞,晶體之結構與性質,第十二章,渤海堂文化公司,台北台灣,1993。
    11. A. Grill, “Diamond- like carbon: state of the art”, Diamond Rel. Mater., 8, 428(1999).
    12. C. D. Martino, F. Demichelis and A. Tagliaferro, “Determination of the sp3/sp2 Ratio in a-C:H Films by Infrared Spectrometry Analysis,”
    Diamond Relat. Mater., 4, 1210-1215(1995).
    13. A. C. Ferrari, and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Physical Review B, 61, 14095-107(2000).
    14. J. C. Angus and C. C. Hayman, “Low-Pressure, Metastable Growth of Diamond and Diamondlike Phases,” Science, 241, 913-921(1998).
    15. H. O. Pierson, Chapter 15, “The fullerene molecules” in Handbook of carbon, graphite, diamond and fullerenes, Noyes publications, p. 356-371(1993).
    16. P. J. F. Harris, Chapter 1, “Introduction” in Carbon nanotubes and related structures, Cambridge university press, p. 1-14(1999).
    17. P. J. F. Harris, Chapter 8, “Carbon onions and spheroidal carbon” in Carbon nanotubes and related structures, Cambridge university press, p. 235-246(1999).
    18. J.Roberson, “Properties of diamond-like carbon,” Surface and Coating Technology 50, 185-203(1992).
    19. J. Robertson, “Diamond-like amorphous carbon”, Mater. Sci. Eng. R, 37, 129(2002).
    20. S. Aisenberg, R. Coabot, J. Appl. Phys. 42, 1771(1971).
    21. A. Grill, V. Patel, B. Meyerson, “Tribological behavior of diamond-like carbon: effects of preparation conditions and annealing,” Surf. Coat. Technol. 49, 530(1991).
    22. B. Feng, D.M. Cao, W.J. Meng, L.E. Rehn, P.M. Baldo, G.L.Doll, “Probing for mechanical and tribological anomalies in the TiC/amorphous hydrocarbon nanocomposite coating system,”Thin Solid Films 398-399, 210(2001).
    23. C. Strondl, N.M. Carvalho, J.Th.M. De Hosson, G.J. van der Kolk, “Investigation on the formation of tungsten carbide in tungsten-containing diamond like carbon coatings,” Surf. Coat. Technol. 162, 288(2003).
    24. A.M. Peters, M. Nastasi, “Titanium-doped hydrogenated DLC coatings deposited by a novel OMCVD-PIIP technique,” Surf. Coat. Technol. 167, 11(2003).
    25. Y. Pauleau, F. Thie`ry, V.V. Uglov, V.M. Anishchik, et al “Tribological properties of copper/carbon films formed by microwave plasma-assisted deposition techniques,” Surface and Coatings Technology 180-181, 102-107(2004).
    26. A. A. Voevodin, J. M. Schneider, C. Caperaa, P. Stevenson & A. Matthews, “Characterization of a Saddle Field Source for Deposition of Diamond-like Carbon Films,” Ceramics international 22, 1996.
    27. 宋健民,鑽石合成,第六章,全華科技圖書股份有限公司(2000)。
    28. 伍秀菁等人編輯,真空技術與應用,第十三章,行政院國家科學委員會精密儀器發展中心,新竹台灣(2001)。
    29. 何以侃主編,儀器分析,文京圖書有限公司,台北台灣(1997)。
    30. I. Watanabe, T. Matsushita and K. Sasahara, Jpn. J. Appl., Phys. 31, 1428(1992).
    31. R. Nonogaki, S. Yamada, T. Araki, and T. Wada, “High rate deposition of diamond-like carbon films by sheet-like plasma chemical vapor deposition,” J. Vac. Sci. Technol. A 17[3], 731 (1999).
    32. F. Tuinstra and J. L. Koenig, “Raman Spectrum of Graphite,” J. Chem. Phys. 53[3], 1126(1970).
    33. S.A. Solin, Physica B 99, 443(1980).
    34. M. A. Capano, N. T. McDeutt, R. K. Singh, and F. Qian, “Characterization of amorphous carbon thin films,” J. Vac. Sci. Technol. A, 14[2], 431(1996).
    35. M. A. Tamor and W. C. Vassel, “Raman 'fingerprinting' of amorphous carbon films,” J. Appl. Phys., 76[6], 3823(1994).
    36. H. C. Tasi, D. B. Bogy, M. K. Kundmann, D. K. Veirs, M. R. Hilton and S. T. Mayer, “Structure and properties of sputtered carbon overcoats on rigid magnetic media disks,” J. Vac. Sci. Technol. A 6[4], 2307(1988).
    37. 何主亮,常挽瀾,陳育智,真空科技,第九卷第二期,34(1996)。
    38. J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt and S.R.P. Silva, “Raman spectroscopy on amorphous carbon films,” J. Appl. Phys., 80 [1], 440-447(1996).
    39. A. Modinos, Chapter one, “Electron emission from free-electron metal,” in Field, Thermionic, and Second Electron Emission Spectroscopy, Plenum Press, 1-34, 1984.
    40. R. H. Folwer and L. Nordheim, “Electron emission in intense electric fields”, Proc. Roy. Soc. Ser. A, 119, 173(1928).
    41. J. E. Jaskie, “Diamond-based field-emission displays”, MRS Bull., 21, 59(1996).
    42. Yung-Hsin Chen, Chen-Ti Hu, I-Nan Lin “Modification on the electron field emission properties of diamond films: The effect of bias voltage applied in situ” J. Appl. Phys. 84, 3890-3894(1998).
    43. 陳聖元,“探材料之場發射機制探討”,科儀新知第二十六卷第四期,63-71(2005)。
    44. 甘明吉,“奈米尺寸探材料之電子場發射特性”,國立成功大學材料科學及工程研究所博士論文(2003)。
    45. B. Angleraud, N. Mubumbila, P. Y. Tessier, V. Fernandez, and G. Turban, “Bonding structure of carbon nitride films deposited by reactive plasma beam sputtering,” Diamond Relat. Mater. 10, 1142(2001).
    46. S. T. Jackson, and R. G. Nuzzo, “Determining hybridization differences for amorphous carbon from the XPS C 1s envelope,” Appl. Surf. Sci. 90, 195(1995).
    47. P. Petrov, D. B. Dimitrov, D. Papadimitrious, G. Beshkov, V. Krastev, and Ch. Georgiev, “Raman and X-ray photoelectron spectroscopy study of carbon nitride thin films,” Appl. Surf. Sci. 151, 233(1999).
    48. Q. Wei, R. J. Narayan, J. Narayan, J. Sankar, and A. K. Sharma, “Improvement of wear resistance of pulsed laser deposited diamond-like carbon films through incorporation of metals,” Mater. Sci. Eng., B 53, 262-266(1998).
    49. E. Liu, X. Shi, B. K. Tay, L. K. Cheah, H. S. Tan, J. R. Shi, and Z. Sun, “Micro-Raman spectroscopic analysis of tetrahedral amorphous carbon films deposited under varying conditions,” J. Appl. Phys., 86 [11], 6078-83(1999).
    50. M. Chhowalla, A. C. Ferrari, J. Robertson, and G. A. J. Amaratunga, “Evolution of sp2 bonding with deposition temperature in tetrahedral amorphous carbon studied by Raman spectroscopy,” Appl. Phys. Lett., 76 [11], 1419-21(2000).
    51. J. Y. Shim, and H. K. Baik, “Effect of non-diamond carbon etching on the field emission property of highly sp2 bonded nanocrystalline diamond films,” Diamond Relat. Mater. 10, 847-51(2001).
    52. 汪建民主編,“材料分析”,中國材料科學學會出版,659-72(1998)。
    53. B. Dumay, E. Finot, M. Theobald, O. Legaie, P. Baclet, J. Durand an J. P. Goundonnet, “Atomic force microscopy investigation of a-C:H films prepared by plasma enhanced chemical vapor deposition for inertial confinement fusion experiments”, J. Vac. Sci. Techol. A, 20, 366 (2002).
    54. Y. Lifshitz, G. D. Lempert, E. Grossman, I. Avigal, C. Uzan-Saguy, et. al. “Growth mechanisms of DLC films from C+ ions: Experimental studies,” Diamond Relat. Mater. 4, 318(1995).
    55. J.D. Carey, R.D. Forrest, R.U.A. Khan, S.R.P. Silva, “Influence of sp2 clusters on the field emission properties of amorphous carbon thin films.” Appl. Phys. Lett. 77, 2006(2000).
    56. A. llie, A.C. Ferrari, T. Yagi, J. Robertson, “Effect of sp2-phase nanostructure on field emission from amorphous carbons,” Appl. Phys. Lett. 76, 2627(2000).
    57. D. Bourgoin, S. Turgeon, G. G. Ross, “Characterization of hydrogenated amorphous carbon films produced by plasma-enhanced chemical vapour deposition with various chemical hybridizations,” Thin Solid Films 357, 246(1999).
    58. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg, “Handbook of x-ray photoelectron spectroscopy,” Perkin-Elmer, Minnesota, USA(1979).
    59. A. C. Ferrari, A. Libassi, B. K. Tanner, V. Stolojan, J. Yuan, L. M. Brown, S. E. Rodil, B. Kleinsorge, and J. Robertson “Density, sp3 fraction, and cross-sectional structure of amorphous carbon films determined by x-ray reflectivity and electron energy-loss spectroscopy,” Physical Review B, 62, 11089(2000).
    60. 譚振台,“類碳膜鍍於銅奈米線之場發射特性研究”,雲林科技大學電機工程研究所碩士論文(2005)。

    下載圖示 校內:2008-02-12公開
    校外:2008-02-12公開
    QR CODE