| 研究生: |
陳琮方 Chen, Tsung-Fang |
|---|---|
| 論文名稱: |
規範理論中朗蘭茲對偶的研究 Survey of Langlands Duality in Gauge theory |
| 指導教授: |
劉之中
Liu, Chih-Chung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 朗蘭茲對偶群 、磁對偶群 、規範理論 、希欽模空間 、鏡像對稱 |
| 外文關鍵詞: | Langlands dual group, magnetic dual group, gauge theory, Hitchin moduli space, mirror symmetry |
| 相關次數: | 點閱:41 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討物理中的磁對偶群與數學中的朗蘭茲對偶群之關係。我們首先介紹朗蘭茲對偶群的概念,並透過常見李群的實例加以說明。接著,證明在非阿貝爾規範理論中出現的磁對偶群與朗蘭茲對偶群完全對應。最後,提出本研究的未來發展方向,特別著重於朗蘭茲對偶群在希金方程之模空間與鏡像對稱背景下的出現,揭示此對偶性背後深刻的幾何和物理架構。
In this thesis, we survey the relation between the magnetic dual group in physics and the Langlands dual group in mathematics. We begin by introducing the notion of Langlands dual groups, illustrated through examples from common Lie groups. We then show that the magnetic dual group arising in non-abelian gauge theory corresponds precisely to the Langlands dual group. Finally, we outline future prospects of this work, with particular emphasis on the appearance of the Langlands dual group in the context of Hitchin moduli spaces and mirror symmetry, revealing deep geometric and physical frameworks underlying this duality.
[1] B. C. Hall, Lie Groups, Lie Algebras, and Representations, Springer, New York, 2015.
[2] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer, New York, 1972.
[3] R. Carter, Lie Algebras of Finite and Affine Type, Cambridge University Press, Cambridge, 2005.
[4] J. Stillwell, Naive Lie Theory, Springer, New York, 2008.
[5] L. Pontryagin, Topological Groups, Princeton University Press, Princeton, 1946.
[6] P. Goddard, J. Nuyts, and D. Olive, Gauge Theories and Magnetic Charge, Nucl. Phys. B 125 (1977), 1–28.
[7] H. Weyl, Theorie der Darstellung kontinuierlicher halb-einfacher Gruppen durch lineare Transformationen I, Math. Z. 23 (1925), 271–309.
[8] T. Kobayashi, Adjoint action, Encyclopedia of Mathematics. http://encyclopediaofmath.org/index.php?title=Adjoint_action&oldid=50334
[9] V. S. Varadarajan, Lie Groups, Lie Algebras, and Their Representations, Springer, New York, 1984.
[10] P. A. M. Dirac, Quantised singularities in the electromagnetic field, Proc. Roy. Soc. A 133 (1931), 60–72.
[11] C. Montonen and D. Olive, Magnetic monopoles as gauge particles?, Phys. Lett. B 72 (1977), no. 1, 117–120.
[12] L. Fredrickson, Perspectives on the Asymptotic Geometry of the Hitchin Moduli Space, arXiv:1809.05735.
[13] M. S. Narasimhan and C. S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann. Math. (2) 82 (1965), 540–567.
[14] S. K. Donaldson, A new proof of a theorem of Narasimhan and Seshadri, J. Diff. Geom. 18 (1983), no. 2, 269–277.
[15] A. Kapustin and E. Witten, Electric-Magnetic Duality And The Geometric Langlands Program, arXiv:0604151
[16] D. Arinkin, D. Beraldo, J. Campbell, L. Chen, J. Faergeman, D. Gaitsgory, K. Lin, S. Raskin and N. Rozenblyum, Proof of the geometric Langlands conjecture, https://people.mpim-bonn.mpg.de/gaitsgde/GLC/
Additional References
[17] E. Witten, Duality, the Langlands Correspondence, and the Influence of Michael Atiyah, Lecture at Isaac Newton Institute, 2021.
[18] S. Makisumi, Structure Theory of Reductive Groups through Examples, 2011. https://makisumi.com/math/old/reductivegroups.pdf
[19] W. Fulton and J. Harris, Representation Theory: A First Course, Springer, New York, 2004.