簡易檢索 / 詳目顯示

研究生: 林誠修
Lin, Cheng-hsiu
論文名稱: 應用奈米球微影術增加氮化鎵發光二極體之光取出效率
Increase of Light Extraction Efficiency of GaN-based Light Emitting Diodes by Nanosphere Lithography
指導教授: 蘇炎坤
Su, Yen-kun
張允崇
Chang, Yun-chung
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 61
中文關鍵詞: 奈米球微影發光二極體
外文關鍵詞: Light emitting diode, nanosphere lithography
相關次數: 點閱:56下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以傳統的發光二極體元件來說,由於只有少部分從氮化鎵發光二極體內所產生的光子能夠被取出,所以外部量子效率較低。因為氮化鎵 (n=2.5)與空氣 (n=1)的折射率差較大,從銦氮化鎵/氮化鎵發光量子井所產生,能夠讓光逃出表面的臨界角大約只有23度左右﹝ ﹞。
    光子晶體結構已經被研究於增加光取出的效率。所謂光子晶體即為一包含兩不同介電常數的材料所構成的週期性結構。奈米球微影術是一種廣受人知,價錢低廉且迅速的方法,而此方法便可用於光子晶體結構發光二極體的製程。
    在此研究中,p參雜氮化鎵表面的光子晶體結構以及n參雜氮化鎵走道部分的粗化結構已被成功融合於氮化鎵發光二極體的製程。此製程所使用的奈米球直徑分別為500以及300奈米。使用旋轉塗覆的技術能將均勻單層的聚苯乙烯奈米球定義於p參雜氮化鎵的表面以及走道區域。而感應耦合電漿離子蝕刻系統則用於光子晶體結構的製程。
    結果的部分,在20毫安培的注入電流下,p參雜氮化鎵光子晶體結構與n參雜氮化鎵走道粗化發光二極體的輸出功率大約分別增加了15.08%和14.36%。這是由於原本侷限於全反射角的光子被取出機率提升後的結果。

    In conventional GaN light-emitting diodes (LEDs), the external quantum efficiency is low because only small fraction of photons which generate inside of GaN-based LEDs can escape. Due to the big difference of refractive indices between GaN (n=2.5) and air (n=1), the critical angle at which light generated in the InGaN/GaN active region can escape is approximately 23° [ ].
    To improve the light extraction efficiency, photonic crystal (PC) structures have also been investigated. A PC is a periodically repeating structure comprising two materials with different dielectric constants.
    To fabricate PC structure light emitting diodes, nanosphere lithography (NSL) is a well-known, low cost and quick preparation method.
    In this investigation, the PC structures on p-GaN and sidewall region are successfully fabricated on GaN based light emitting diode. The diameters of nanospheres are 500 and 300 nm, respectively. An ordered monolayer Polystyrene spheres are uniformly spread on p-GaN surface and sidewall region by spin coating. The PC structures are formed by inductively coupled plasma (ICP) dry etching.
    As the result, with 20 mA injection current, it was found that the output power were enhanced by 15.08% and 14.36% for the p-GaN pc LEDs and n-GaN sidewall textured LEDs, respectively. The enhancement is attributed to the light extraction probability of internally reflected photons.

    Contents Abstract (in chinese)--------------------------------------------------------------I Abstract (in English)------------------------------------------------------------III Acknowledgement----------------------------------------------------------------V Contents--------------------------------------------------------------------------VII Table Captions-------------------------------------------------------------------IX Figure Captions-------------------------------------------------------------------X Chapter 1 Introduction------------------------------------------------------------1 1.1 Background---------------------------------------------------------------1 1.2 GaN-based LEDs--------------------------------------------------------1 1.3 Motivation----------------------------------------------------------------2 Chapter 2 Theory and Background---------------------------------------------8 2.1 Nanosphere Lithography-----------------------------------------------8 2.2 Inductively Coupled Plasma (ICP) Etching--------------------------9 2.3 Photonic Crystal--------------------------------------------------------10 2.4 History Background---------------------------------------------------11 Chapter 3 Experiments----------------------------------------------------------17 3.1 Spin Coating------------------------------------------------------------17 3.2 Simulation---------------------------------------------------------------19 3.3 Recipes of ICP Dry Etching------------------------------------------20 3.3.1 P-GaN Photonic Crystal Structures--------------------------20 3.3.2 N-GaN Sidewall Region Textured Structures---------------21 3.4 Fabrication of GaN-based LED--------------------------------------23 3.4.1 p-GaN PC LEDs------------------------------------------------23 3.4.2 n-GaN Sidewall Region Textured LEDs---------------------24 Chapter 4 Results and Discussion---------------------------------------------44 4.1 Measurements----------------------------------------------------------44 4.2 p-GaN PC LEDs--------------------------------------------------------44 4.3 n-GaN Sidewall Region Textured LEDs----------------------------45 Chapter 5 Conclusion-----------------------------------------------------------56 5.1 Conclusion--------------------------------------------------------------56 5.2 Future Work-------------------------------------------------------------57 References------------------------------------------------------------------------59

    [1] Huh C, Lee K S, Kang E J and Park S J, J. Appl. Phys. 93 9383–5, 2003.
    [2] Fujii T, Gao Y, Sharma R, Hu E L, DenBaars S P and Nakamura S Appl. Phys. Lett. 84 855, 2004.
    [3] Gao Y, Fujii T, Sharma R, Fujito K, Denbaars S P, Nakamura S and Hu E L, Japan. J. Appl. Phys 43 637, 2004.
    [4] Yan Xu, Garrett J. Schneider, Eric D. Wetzel, and Dennis W. Prather, Proc. of SPIE Vol. 5183 Lithographic and Micromachining Techniques for Optical Component Fabrication II, 2003.
    [5] J. Rybczynski a,b, U. Ebels c, M. Giersig, Colloids and Surfaces A: Physicochem. Eng. Aspects 219, 2003.
    [6] Kenji ORITA, Satoshi TAMURA, Toshiyuki TAKIZAWA, Tetsuzo UEDA, Masaaki YURI,Shinichi TAKIGAWA and Daisuke UEDA, Japanese Journal of Applied Physics, Vol. 43, No. 8B, 2004, pp. 5809–5813.
    [7] J. Shakya, K. H. Kim, J. Y. Lin, and H. X. Jianga, APPLIED PHYSICS LETTERS, VOLUME 85, NUMBER 1, 2004.
    [8] T. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiangb, APPLIED PHYSICS LETTERS, VOLUME 84, NUMBER 4 26, JANUARY 2004.
    [9] Dong-Ho Kim, Chi-O Cho, Yeong-Geun Roh, Heonsu Jeon,a and Yoon Soo Park, Proc. APPLIED PHYSICS LETTERS 87, 203508 2005.
    [10] Kyeong-Jae Byeon, Seon-Yong Hwang, and Heon Lee, APPLIED PHYSICS LETTERS 91, 091106 2007.
    [11] Ja-Yeon Kim, Min-Ki Kwon, Ki-Sung Lee, and Seong-Ju Parka, APPLIED PHYSICS LETTERS 91, 181109 2007.
    [12] Tae Sun Kim, Sang-Mook Kim, Yun Hee Jang, and Gun Young Jung, APPLIED PHYSICS LETTERS 91, 171114.
    [13] C. F. Shen, S. J. Chang, T. K. Ko, C. T. Kuo, S. C. Shei, W. S. Chen, C. T. Lee, Senior Member, IEEE, C. S. Chang, and Y. Z. Chiou, IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 18, NO. 23, DECEMBER 1, 2006.
    [14] Hung-Wen Huang, H CKuo, J T Chu, C F Lai1, CC Kao,T C Lu, S CWang, R J Tsai,C C Yu and C F Lin, Nanotechnology 17 (2006) 2998–3001.
    [15] Shuo Han, Zhibiao Hao,a_ Jian Wang, and Yi Luo, J. Vac. Sci. Technol. B 23(4), Jul/Aug 2005.
    [16] Sang Hoon Kim, Ki-Dong Lee, Ja-Yeon Kim, Min-Ki Kwon and Seong-Ju Park, Nanotechnology 18 (2007) 055306.
    [17] C. L. Lin and P. H. Chen, APPLIED PHYSICS LETTERS 90, 242106 2007.
    [18] Hung-Wen Huang, H CKuo, J T Chu, C F Lai, CC Kao,T C Lu, S CWang, R J Tsai,C C Yu and C F Lin, INSTITUTE OF PHYSICS PUBLISHING NANOTECHNOLOGY Nanotechnology 17 (2006) 2998–3001.
    [19] R. H. Hornga and C. C. Yang, APPLIED PHYSICS LETTERS 86, 221101 s2005d.
    [20] Chiao-Chih YANG, Ray-Hua HORNG, Chia-En LEE, Wen-Yu LIN, Kuan-Fu PAN, Ying-Yong SU and Dong-Sing WUU, Japanese Journal of Applied Physics Vol. 44, No. 4B, 2005, pp. 2525–2527.
    [21] Ray-Hua Horng, Shao-Hua Huang, Chiao-Chih Yang, and Dong-Sing Wuu, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 12, NO. 6, NOVEMBER/DECEMBER 2006.

    下載圖示 校內:2009-06-24公開
    校外:2010-06-24公開
    QR CODE