簡易檢索 / 詳目顯示

研究生: 唐翊馨
Tang, Yi-Hsin
論文名稱: 利用微波方式資源化生質甘蔗渣為多孔碳材於薄膜電容去離子之應用
Hierarchical structure carbon from sugarcane bagasse by microwave-assisted KOH activation under N2 and CO2 gas for membrane capacitive deionization.
指導教授: 劉守恒
Liu, Shou-Heng
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 99
中文關鍵詞: 薄膜電容去離子活性碳微波活化農業廢棄物
外文關鍵詞: membrane capacitive deionization (MCDI), activated carbon, biomass, microwave- assisted activation
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於氣候的變遷,許多國家將面臨極大的水資源壓力。而海水為地球上數量最大的水資源,開發利用海水淡化的技術被列為解決全球性水資源危機的方法之一。其中電容去離子(capacity deionization, CDI)具有低耗能的優點,為近年較新穎的中低鹽水電容脫鹽技術。利用在帶電的多孔碳電極中,使帶電荷的離子往相反的電極方向移動,並在孔洞間形成電雙層來達到移除水中離子的目的。在CDI的基礎上,薄膜電容去離子(membrane capacity deionization, MCDI)於正負電極表面加上一層離子交換膜(ion exchange membranes, IEMs)以增加離子選擇性,幫助離子不受水流干擾以正常遷移,並減少離子在脫附過程中吸附於反相電極表面的可能,從而提升電吸附效能以及電極的再生。
    本研究利用生質廢棄物甘蔗渣製成多孔性碳電極,使用KOH化學活化劑分別在N2與CO2氣體下在進行微波活化,並探討不同微波功率、時間與氣體流速對多孔性碳之比表面積與孔體積的變化。以比表面積分析儀(BET)、掃描電子顯微鏡(SEM)與循環伏安法(Cyclic voltammetry)等方法進行特性分析。其中,微波系統相較於傳統管式高溫爐製備碳電極,具有節省碳電極製備時間以及減少能源消耗等優點。
    結果顯示在N2與CO2的條件下,為功率為700 W與微波時間5-7分鐘為最佳。微波系統N2氣對於微波沒有微波誘導性,不同流速對於比表面積與孔洞變化沒有明顯差異,數據結果為比電容值為177 F/g,電吸附量為9.4 mg/g。但在CO2氣氛下,碳電極具有較佳的孔洞發展條件,其中流量300 cm3/min比表面積為最佳,電吸附的結果顯示,在CO2流量300 cm3/min的氣氛下以700 W,5分鐘微波活化獲得較高的效能,其比電容值為208 F/g,電吸附量為28.97 mg/g,相較於在N2氣體下製備的電極有較好的電容去離子性能。

    According to the United Nation report, the water scarcity is one of the global problems in recent years due to climate change, increased demand and pollution issues. Desalination technology could be a possible solution to solve this problem. Among many promising technologies, membrane capacitive deionization (MCDI) is an emerging technology for the energy-efficient and cost-effective removal of ions from salt water by electrosorption via charged porous carbon electrodes at low voltages.
    In this study, sugarcane bagasse biowastes are applied to synthesize carbon electrode materials by microwave-assisted carbonization and activation. The microwave radiation has the advantages of reducing reaction time and enhancing uniform heating. In terms of activation, preparation of biowaste-derived carbons invoke physical and chemical activation. The activation by potassium hydroxide under N2 or CO2 flow can change ratios of mesopores and micropores structure to provide a large surface area for ions easy access to the electrode interface. The suitable pore size distribution serves as the rapid transport of ions in the electrode and good electrical conductivity. Therefore, the influences of activated time and activated gas on carbon morphology and the ratio of mesoporosity have been studied and the best conditions for desalination performance were determined by membrane capacitive deionization.
    The operational parameters have been tested at the microwave power from 500 W to 800 W, different irradiation time (3-9 min) and flow rates (100-600 cm3/mL) under the N2 and CO2 flows. These results show that carbon electrodes have mesopore ratios (Vmeso/Vtot) of about 55.9% and 56.7% under the N2 and CO2 activation, respectively. The BET specific surface area is approximately between 600 m2/g and 1000 m2/g. By using cyclic voltammetry, the specific capacitance of samples with CO2 activation is calculated to be about 208 F/g, which is higher than that with N2 activation (177 F/g). As a result, the CO2-700-5-300 sample has the surpassing electrosorption capacity of 28.9 mg/g in 5 mM NaCl solution at 1.2 voltage.

    摘要 I ABSTRACT II CONTENT IV LIST OF TABLES VII LIST OF FIGURES IX CHAPTER 1 INTRODUCTION 1 1.1. Introduction 1 1.2. Objective 2 CHAPTER 2 LITERATURE REVIEW 3 2.1. Desalination technologies 3 2.2. Capacitive Deionization 7 2.2.1. Basic Principle of CDI and MCDI System 7 2.2.2. Theory of the electrical double layer 9 2.2.3. Faradaic Reaction 10 2.2.4. Electrode materials for CDI 12 2.3. Biomass waste of porous materials 17 2.3.1. Carbonization 18 Conventional carbonization - Pyrolysis 20 Hydrothermal carbonization 20 2.3.2. Activation 21 Physical activation 21 Chemical activation 22 2.4. Microwave Heating 23 CHAPTER 3 PERIMENT METHODS 25 3.1. Experimental procedures 25 3.1.1. Chemicals 25 3.2. Preparation of activation carbon from bagasse 27 3.2.1. Waste materials 27 3.2.2. Microwave-assisted hydrothermal carbonization 27 3.2.3. Conventional hydrothermal carbonization 27 3.2.4. Preparation of activated carbons 28 3.3. Preparation of electrodes 30 3.4. Electrosorption Experiments 30 3.5. Characterization and Analysis 32 3.5.1. Elemental analysis 32 3.5.2. Loss on Ignition (LOI) of solid combustion residues 32 3.5.3. X-Ray Diffraction 33 3.5.4. Thermogravimetric Analysis 33 3.5.5. X-ray Fluorescence 34 3.5.6. Scanning Electron Microscopy 34 3.5.7. Brunauer-Emmett-Teller and Barrett-Joyner-Halenda 34 3.5.8. Raman Spectroscopy 35 3.5.9. Cyclic voltammetry 35 CHAPTER 4 RESULTS AND DISCUSSION 37 4.1. Characterization of sugarcane bagasse 37 4.1.1. Physical properties 37 4.1.2. TGA 37 4.1.3. XRF 39 4.1.4. Carbonization 39 4.2. Effect of microwave power 41 4.2.1. Pore structure of activated carbons 41 4.2.2. XRD 43 4.2.3 SEM 45 4.2.4. Raman 46 4.2.5. Cyclic voltammetry 47 4.2.6. Salt electrosorption capacity 49 4.3. Effect of radiation time 53 4.3.1. Pore structure of activated carbons 53 4.3.2. XRD 56 4.3.3. SEM 57 4.3.4. Raman 58 4.3.5. Cyclic voltammetry 59 4.3.6. Salt electrosorption capacity 61 4.4. Effect of N2 and CO2 flow rate 71 4.4.1. Pore structure of activated carbons 71 4.4.2. XRD 74 4.4.3. SEM 75 4.4.4. Raman 76 4.4.5. Cyclic voltammetry 77 4.4.6. Salt electrosorption capacity 79 CHAPTER 5 CONCLUSIONS 86 REFERENCES 87 APPENDIX 95

    Ahmed, M. J., Application of agricultural based activated carbons by microwave and conventional activations for basic dye adsorption. Journal of Environmental Chemical Engineering, 4(1), 89-99. (2016).
    Ahmed, M. J., & Theydan, S. K., Microporous activated carbon from Siris seed pods by microwave-induced KOH activation for metronidazole adsorption. Journal of Analytical and Applied Pyrolysis, 99, 101-109. (2013).
    Aljeboree, A. M., Alshirifi, A. N., & Alkaim, A. F., Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arabian journal of chemistry, 10, S3381-S3393. (2017).
    AlMarzooqi, F. A., Al Ghaferi, A. A., Saadat, I., & Hilal, N., Application of capacitive deionisation in water desalination: a review. Desalination, 342, 3-15. (2014).
    Alslaibi, T. M., Abustan, I., Ahmad, M. A., & Foul, A. A., A review: production of activated carbon from agricultural byproducts via conventional and microwave heating. Journal of chemical technology and biotechnology, 88(7), 1183-1190. (2013).
    ASTM. Standard test method for loss on ignition (LOI) of solid combustion residues. (2008).
    Bläsing, M., Tanner, J., Winters, T., & Müller, M., Brief Evaluation of Selected Fuel Characteristics of Thermochemically Upgraded Wheat Straw: Torrefaction and Hydrothermal Carbonization. Energy & Fuels, 31(12), 14426-14429. (2017).
    Burn, S., Hoang, M., Zarzo, D., Olewniak, F., Campos, E., Bolto, B., & Barron, O., Desalination techniques—a review of the opportunities for desalination in agriculture. Desalination, 364, 2-16. (2015).
    Byrne, C., & Nagle, D., Carbonized wood monoliths—characterization. Carbon, 35(2), 267-273. (1997).
    Caturla, F., Molina-Sabio, M., & Rodriguez-Reinoso, F., Preparation of activated carbon by chemical activation with ZnCl2. Carbon, 29(7), 999-1007. (1991).
    Chang, C.-F., Chang, C.-Y., & Tsai, W.-T., Effects of burn-off and activation temperature on preparation of activated carbon from corn cob agrowaste by CO2 and steam. Journal of Colloid and Interface Science, 232(1), 45-49. (2000).
    Chang, L. M., Duan, X. Y., & Liu, W., Preparation and electrosorption desalination performance of activated carbon electrode with titania. Desalination, 270(1-3), 285-290. (2011).
    Chen, W.-H., Ye, S.-C., & Sheen, H.-K., Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating. Bioresource technology, 118, 195-203. (2012).
    Chen, Z., Song, C., Sun, X., Guo, H., & Zhu, G., Kinetic and isotherm studies on the electrosorption of NaCl from aqueous solutions by activated carbon electrodes. Desalination, 267(2-3), 239-243. (2011).
    Dai, L., He, C., Wang, Y., Liu, Y., Yu, Z., Zhou, Y., . . . Ruan, R., Comparative study on microwave and conventional hydrothermal pretreatment of bamboo sawdust: Hydrochar properties and its pyrolysis behaviors. Energy Conversion and Management, 146, 1-7. (2017).
    Danish, M., & Ahmad, T., A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renewable and Sustainable Energy Reviews, 87, 1-21. (2018).
    Dehkhoda, A. M., Ellis, N., & Gyenge, E., Electrosorption on activated biochar: effect of thermo-chemical activation treatment on the electric double layer capacitance. Journal of Applied Electrochemistry, 44(1), 141-157. (2014).
    Dias, J. M., Alvim-Ferraz, M. C., Almeida, M. F., Rivera-Utrilla, J., & Sánchez-Polo, M., Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. Journal of environmental management, 85(4), 833-846. (2007).
    Elaigwu, S. E., & Greenway, G. M., Microwave-assisted and conventional hydrothermal carbonization of lignocellulosic waste material: comparison of the chemical and structural properties of the hydrochars. Journal of Analytical and Applied Pyrolysis, 118, 1-8. (2016).
    Feng, H., Hu, H., Dong, H., Xiao, Y., Cai, Y., Lei, B., . . . Zheng, M., Hierarchical structured carbon derived from bagasse wastes: a simple and efficient synthesis route and its improved electrochemical properties for high-performance supercapacitors. Journal of Power Sources, 302, 164-173. (2016).
    Foo, K., & Hameed, B., Coconut husk derived activated carbon via microwave induced activation: effects of activation agents, preparation parameters and adsorption performance. Chemical Engineering Journal, 184, 57-65. (2012).
    Girgis, B. S., Temerk, Y. M., Gadelrab, M. M., & Abdullah, I. D., X-ray diffraction patterns of activated carbons prepared under various conditions. Carbon letters, 8(2), 95-100. (2007).
    González-García, P., Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renewable and Sustainable Energy Reviews. (2017).
    Gu, X., Yang, Y., Hu, Y., Hu, M., & Wang, C., Fabrication of graphene-based xerogels for removal of heavy metal ions and capacitive deionization. ACS Sustainable Chemistry & Engineering, 3(6), 1056-1065. (2015).
    Guiotoku, M., Rambo, C., Hansel, F., Magalhaes, W., & Hotza, D., Microwave-assisted hydrothermal carbonization of lignocellulosic materials. Materials Letters, 63(30), 2707-2709. (2009).
    Guo, J., & Lua, A. C., Preparation of activated carbons from oil-palm-stone chars by microwave-induced carbon dioxide activation. Carbon, 38(14), 1985-1993. (2000).
    Han, Y. W., Catalano, E. A., & Ciegler, A., Chemical and physical properties of sugarcane bagasse irradiated with. gamma. rays. Journal of Agricultural and Food Chemistry, 31(1), 34-38. (1983).
    He, F., Biesheuvel, P., Bazant, M. Z., & Hatton, T. A., Theory of water treatment by capacitive deionization with redox active porous electrodes. Water research. (2018).
    Hesas, R. H., Arami-Niya, A., Daud, W. M. A. W., & Sahu, J., Microwave-assisted production of activated carbons from oil palm shell in the presence of CO2 or N2 for CO2 adsorption. Journal of Industrial and Engineering Chemistry, 24, 196-205. (2015).
    Hesas, R. H., Daud, W. M. A. W., Sahu, J., & Arami-Niya, A., The effects of a microwave heating method on the production of activated carbon from agricultural waste: a review. Journal of Analytical and Applied Pyrolysis, 100, 1-11. (2013).
    Hou, C.-H., Liu, N.-L., Hsu, H.-L., & Den, W., Development of multi-walled carbon nanotube/poly (vinyl alcohol) composite as electrode for capacitive deionization. Separation and Purification Technology, 130, 7-14. (2014).
    Hu, Z., & Vansant, E., Synthesis and characterization of a controlled-micropore-size carbonaceous adsorbent produced from walnut shell. Microporous materials, 3(6), 603-612. (1995).
    Huang, S.-Y., Fan, C.-S., & Hou, C.-H., Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization. Journal of hazardous materials, 278, 8-15. (2014).
    Huang, Z.-H., Yang, Z., Kang, F., & Inagaki, M., Carbon electrodes for capacitive deionization. Journal of Materials Chemistry A, 5(2), 470-496. (2017).
    Humplik, T., Lee, J., O’hern, S., Fellman, B., Baig, M., Hassan, S., . . . Karnik, R., Nanostructured materials for water desalination. Nanotechnology, 22(29), 292001. (2011).
    Ioannidou, O., & Zabaniotou, A., Agricultural residues as precursors for activated carbon production—a review. Renewable and Sustainable Energy Reviews, 11(9), 1966-2005. (2007).
    Jia, B., & Zhang, W., Preparation and application of electrodes in capacitive deionization (CDI): a state-of-art review. Nanoscale research letters, 11(1), 64. (2016).
    Junior, O. P., Cazetta, A. L., Gomes, R. C., Barizão, É. O., Souza, I. P., Martins, A. C., . . . Almeida, V. C., Synthesis of ZnCl2-activated carbon from macadamia nut endocarp (Macadamia integrifolia) by microwave-assisted pyrolysis: optimization using RSM and methylene blue adsorption. Journal of Analytical and Applied Pyrolysis, 105, 166-176. (2014).
    Kalderis, D., Bethanis, S., Paraskeva, P., & Diamadopoulos, E., Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times. Bioresource technology, 99(15), 6809-6816. (2008).
    Kambo, H. S., & Dutta, A., A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews, 45, 359-378. (2015).
    Kim, T., & Yoon, J., CDI ragone plot as a functional tool to evaluate desalination performance in capacitive deionization. RSC Advances, 5(2), 1456-1461. (2015).
    Kostas, E. T., Beneroso, D., & Robinson, J. P., The application of microwave heating in bioenergy: A review on the microwave pre-treatment and upgrading technologies for biomass. Renewable and Sustainable Energy Reviews, 77, 12-27. (2017).
    Kumar, A., Negi, Y. S., Choudhary, V., & Bhardwaj, N. K., Sugarcane Bagasse: A Promising Source for the Production of Nanocellulose. Journal of Polymer and Composites, 2(3), 23-27. (2014).
    Lado, J. J., Zornitta, R. L., Calvi, F. A., Martins, M., Anderson, M. A., Nogueira, F. G., & Ruotolo, L. A., Enhanced capacitive deionization desalination provided by chemical activation of sugar cane bagasse fly ash electrodes. Journal of Analytical and Applied Pyrolysis, 126, 143-153. (2017).
    Lado, J. J., Zornitta, R. L., Calvi, F. A., Tejedor-Tejedor, M. I., Anderson, M. A., & Ruotolo, L. A., Study of sugar cane bagasse fly ash as electrode material for capacitive deionization. Journal of Analytical and Applied Pyrolysis, 120, 389-398. (2016).
    Laine, J., & Calafat, A., Factors affecting the preparation of activated carbons from coconut shell catalized by potassium. Carbon, 29(7), 949-953. (1991).
    Laksaci, H., Khelifi, A., Belhamdi, B., & Trari, M., Valorization of coffee grounds into activated carbon using physic—chemical activation by KOH/CO2. Journal of Environmental Chemical Engineering, 5(5), 5061-5066. (2017).
    Li, G.-X., Hou, P.-X., Zhao, S.-Y., Liu, C., & Cheng, H.-M., A flexible cotton-derived carbon sponge for high-performance capacitive deionization. Carbon, 101, 1-8. (2016).
    Li, W., Zhang, L.-b., Peng, J.-h., Li, N., & Zhu, X.-y., Preparation of high surface area activated carbons from tobacco stems with K2CO3 activation using microwave radiation. Industrial crops and products, 27(3), 341-347. (2008).
    Liu, N.-L., Dutta, S., Salunkhe, R. R., Ahamad, T., Alshehri, S. M., Yamauchi, Y., . . . Wu, K. C.-W., ZIF-8 derived, nitrogen-doped porous electrodes of carbon polyhedron particles for high-performance electrosorption of salt ions. Scientific reports, 6, 28847. (2016).
    Liu, P., Wang, H., Yan, T., Zhang, J., Shi, L., & Zhang, D., Grafting sulfonic and amine functional groups on 3D graphene for improved capacitive deionization. Journal of Materials Chemistry A, 4(14), 5303-5313. (2016).
    Liu, P., Yan, T., Shi, L., Park, H. S., Chen, X., Zhao, Z., & Zhang, D., Graphene-based materials for capacitive deionization. Journal of Materials Chemistry A, 5(27), 13907-13943. (2017).
    Liu, Y., Ma, J., Lu, T., & Pan, L., Electrospun carbon nanofibers reinforced 3D porous carbon polyhedra network derived from metal-organic frameworks for capacitive deionization. Scientific reports, 6, 32784. (2016).
    Nahil, M. A., & Williams, P. T., Pore characteristics of activated carbons from the phosphoric acid chemical activation of cotton stalks. Biomass and Bioenergy, 37, 142-149. (2012).
    Nightingale Jr, E., Phenomenological theory of ion solvation. Effective radii of hydrated ions. The Journal of Physical Chemistry, 63(9), 1381-1387. (1959).
    Organization, W. H. (2015). Progress on drinking water and sanitation: 2015 update and MDG assessment Progress on drinking water and sanitation: 2015 update and MDG assessment (pp. 80-80).
    Otowa, T., Tanibata, R., & Itoh, M., Production and adsorption characteristics of MAXSORB: high-surface-area active carbon. Gas separation & purification, 7(4), 241-245. (1993).
    Pilon, L., Wang, H., & d’Entremont, A., Recent advances in continuum modeling of interfacial and transport phenomena in electric double layer capacitors. Journal of The Electrochemical Society, 162(5), A5158-A5178. (2015).
    Pinto, F. S., & Marques, R. C., Desalination projects economic feasibility: A standardization of cost determinants. Renewable and Sustainable Energy Reviews, 78, 904-915. (2017).
    Porada, S., Borchardt, L., Oschatz, M., Bryjak, M., Atchison, J., Keesman, K., . . . Presser, V., Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization. Energy & Environmental Science, 6(12), 3700-3712. (2013).
    Porada, S., Weinstein, L., Dash, R., Van Der Wal, A., Bryjak, M., Gogotsi, Y., & Biesheuvel, P., Water desalination using capacitive deionization with microporous carbon electrodes. ACS applied materials & interfaces, 4(3), 1194-1199. (2012).
    Porada, S., Zhao, R., Van Der Wal, A., Presser, V., & Biesheuvel, P., Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science, 58(8), 1388-1442. (2013).
    Qu, D., & Shi, H., Studies of activated carbons used in double-layer capacitors. Journal of Power Sources, 74(1), 99-107. (1998).
    Raymundo-Pinero, E., Azais, P., Cacciaguerra, T., Cazorla-Amorós, D., Linares-Solano, A., & Béguin, F., KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation. Carbon, 43(4), 786-795. (2005).
    Rodriguez-Reinoso, F., & Molina-Sabio, M., Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview. Carbon, 30(7), 1111-1118. (1992).
    Saadi, R., Saadi, Z., Fazaeli, R., & Fard, N. E., Monolayer and multilayer adsorption isotherm models for sorption from aqueous media. Korean Journal of Chemical Engineering, 32(5), 787-799. (2015).
    Saenko, N., The X-ray diffraction study of three-dimensional disordered network of nanographites: experiment and theory. Physics Procedia, 23, 102-105. (2012).
    Schwenke, A. M., Hoeppener, S., & Schubert, U. S., Synthesis and modification of carbon nanomaterials utilizing microwave heating. Advanced Materials, 27(28), 4113-4141. (2015).
    Shahzad, M. W., Burhan, M., Ang, L., & Ng, K. C., Energy-water-environment nexus underpinning future desalination sustainability. Desalination, 413, 52-64. (2017).
    Shannon, R. T., & Prewitt, C. T., Effective ionic radii in oxides and fluorides. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 25(5), 925-946. (1969).
    Shi, W., Li, H., Cao, X., Leong, Z. Y., Zhang, J., Chen, T., . . . Yang, H. Y., Ultrahigh performance of novel capacitive deionization electrodes based on a three-dimensional graphene architecture with nanopores. Scientific reports, 6, 18966. (2016).
    Suss, M., Porada, S., Sun, X., Biesheuvel, P., Yoon, J., & Presser, V., Water desalination via capacitive deionization: what is it and what can we expect from it? Energy & Environmental Science, 8(8), 2296-2319. (2015).
    Tian, G., Liu, L., Meng, Q., & Cao, B., Preparation and characterization of cross-linked quaternised polyvinyl alcohol membrane/activated carbon composite electrode for membrane capacitive deionization. Desalination, 354, 107-115. (2014).
    Titirici, M. M., Thomas, A., Yu, S.-H., Müller, J.-O., & Antonietti, M., A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization. Chemistry of Materials, 19(17), 4205-4212. (2007).
    Tremel, A., Stemann, J., Herrmann, M., Erlach, B., & Spliethoff, H., Entrained flow gasification of biocoal from hydrothermal carbonization. Fuel, 102, 396-403. (2012).
    Vardon, D. R., Sharma, B. K., Blazina, G. V., Rajagopalan, K., & Strathmann, T. J., Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Bioresource technology, 109, 178-187. (2012).
    Wang, C.-H., Wen, W.-C., Hsu, H.-C., & Yao, B.-Y., High-capacitance KOH-activated nitrogen-containing porous carbon material from waste coffee grounds in supercapacitor. Advanced Powder Technology, 27(4), 1387-1395. (2016).
    Wang, G., Dong, Q., Ling, Z., Pan, C., Yu, C., & Qiu, J., Hierarchical activated carbon nanofiber webs with tuned structure fabricated by electrospinning for capacitive deionization. Journal of Materials Chemistry, 22(41), 21819-21823. (2012).
    Wang, G., Qian, B., Dong, Q., Yang, J., Zhao, Z., & Qiu, J., Highly mesoporous activated carbon electrode for capacitive deionization. Separation and Purification Technology, 103, 216-221. (2013).
    Wang, Q., Yan, J., Wang, Y., Wei, T., Zhang, M., Jing, X., & Fan, Z., Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon, 67, 119-127. (2014).
    Wei, L., Sevilla, M., Fuertes, A. B., Mokaya, R., & Yushin, G., Hydrothermal carbonization of abundant renewable natural organic chemicals for high‐performance supercapacitor electrodes. Advanced Energy Materials, 1(3), 356-361. (2011).
    Wei, Y., Huo, Y., Tian, G., Meng, Q., & Cao, B., Nitrogen-doped functional graphene nanocomposites for capacitive deionization of NaCl aqueous solutions. Journal of Solid State Electrochemistry, 20(8), 2351-2362. (2016).
    Weinstein, L., & Dash, R., Supercapacitor carbons. Materials Today, 10(16), 356-357. (2013).
    Wu, Y., Luo, H., Wang, H., Wang, C., Zhang, J., & Zhang, Z., Adsorption of hexavalent chromium from aqueous solutions by graphene modified with cetyltrimethylammonium bromide. Journal of Colloid and Interface Science, 394, 183-191. (2013).
    Xu, W.-H., Wang, L., Wang, J., Sheng, G.-P., Liu, J.-H., Yu, H.-Q., & Huang, X.-J., Superparamagnetic mesoporous ferrite nanocrystal clusters for efficient removal of arsenite from water. CrystEngComm, 15(39), 7895-7903. (2013).
    Yang, K., Peng, J., Xia, H., Zhang, L., Srinivasakannan, C., & Guo, S., Textural characteristics of activated carbon by single step CO2 activation from coconut shells. Journal of the Taiwan Institute of Chemical Engineers, 41(3), 367-372. (2010).
    Yang, S., Hu, H., & Chen, G., Preparation of carbon adsorbents with high surface area and a model for calculating surface area. Carbon, 40(3), 277-284. (2002).
    Yang, T., & Lua, A. C., Characteristics of activated carbons prepared from pistachio-nut shells by physical activation. Journal of Colloid and Interface Science, 267(2), 408-417. (2003).
    Yeh, C.-L., Hsi, H.-C., Li, K.-C., & Hou, C.-H., Improved performance in capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio. Desalination, 367, 60-68. (2015).
    Yin, H., Zhao, S., Wan, J., Tang, H., Chang, L., He, L., . . . Tang, Z., Three‐dimensional graphene/metal oxide nanoparticle hybrids for high‐performance capacitive deionization of saline water. Advanced Materials, 25(43), 6270-6276. (2013).
    Youssef, P., Al-Dadah, R., & Mahmoud, S., Comparative analysis of desalination technologies. Energy Procedia, 61, 2604-2607. (2014).
    Yuan, C., Gao, B., Shen, L., Yang, S., Hao, L., Lu, X., . . . Zhang, X., Hierarchically structured carbon-based composites: design, synthesis and their application in electrochemical capacitors. Nanoscale, 3(2), 529-545. (2011).
    Zhang, C., He, D., Ma, J., Tang, W., & Waite, T. D., Faradaic reactions in capacitive deionization (CDI)-problems and possibilities: A review. Water research, 128, 314-330. (2018).
    Zhang, L. L., & Zhao, X., Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 38(9), 2520-2531. (2009).
    Zhu, Y.-J., & Chen, F., Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chemical reviews, 114(12), 6462-6555. (2014).

    無法下載圖示 校內:2023-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE