| 研究生: |
蔡宗倫 Tsai, Tsung-Lun |
|---|---|
| 論文名稱: |
應用於V-band毫米波前端電路之CMOS壓控振盪器與混頻器設計 Design of CMOS VCO and Mixer for V-band Millimeter-Wave Front-End |
| 指導教授: |
莊惠如
Chuang, Huey-Ru |
| 共同指導教授: |
黃尊禧
Huang, Tzuen-Hsi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 毫米波 、壓控振盪器 、次諧波混頻器 |
| 外文關鍵詞: | mm-wave, VCO, subhrmonic mixer |
| 相關次數: | 點閱:68 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於隨著無線通訊系統日新月異,從通訊頻率需求的領域提升到毫米波。研究上對於毫米波前端電路的發展日趨蓬勃發展,以往毫米波電路需要更好的元件特性,大多採用SiGe BiCMOS或是III-V族化合物半導體製程來實現。但是隨著CMOS製程技術演進,其價格相較於BiCMOS及III-V族化合物半導體低廉,而且其在超高頻的收發機電路設計中甚有不錯的效能表現。因此本論文針對V-band毫米波前端電路的壓控振盪器與混頻器設計採用CMOS製程來研製。晶片製作均使用國家晶片中心提供之標準的TSMC先進的90-nm製程來實現。
本論文主要分為三部分,第一部分收集目前發展較普遍的通訊系統並介紹60-GHz頻帶WPAN應用與其相關研究背景。第二部分為實作一顆V-band毫米波寬頻差動LC壓控振盪器晶片,使用電壓調整可切換式傳輸線電容的技巧。量測結果顯示:電路從49.56 GHz到54.08 GHz有8.7% 的可調頻率範圍;距中心頻率1MHz時最好的相位雜訊為-93.2-dBc/Hz;壓控振盪器核心部分的功率消耗為10.8mW;輸出功率在頻率範圍內皆大於-17.8dBm。第三部分除了介紹混頻器與四相位壓控振盪器的基礎理論,特別注重在次諧波混頻器的背景與設計。完成一個V-band混頻器與Ka-band四相位壓控振盪器整合電路的Layout與下線。該電路可應用於60-GHz頻帶直接降頻接收器,由57-64-GHz RF訊號與1/2LO混頻出500MHz IF訊號。其中,我們比較兩組模擬數據:一組為-22-dBm P-1dB、並有高達12-dB轉換增益與-12-dBm IIP3;另一組為-14-dBm P-1dB、並有高達3.5-dB轉換增益與0-dBm IIP3,且都有良好的Port-to-port Isolation。依據所提出的電路的效能表現,使用TSMC CMOS 90-nm先進製程,可以實現毫米波先端電路的設計,並且有助於未來完成60-GHz V-band收發機整合之可行性。
Owing to the advances of wireless communication systems, the operation frequency moves from radio-frequency up to millimeter-wave. The development of millimeter-wave front-end has been prospering in research. High-frequency circuits need devices with better properties in the SiGe BiCMOS or III-V compound semiconductor technology. Now with utilizing a low-cost and advanced CMOS process, we can design the transceivers operated at the UHF band. All the circuits proposed are implemented in TSMC’s 90-nm CMOS process provided by CIC. A V-band VCO and a sub-harmonic mixer with Ka-band QVCO have been designed mainly in this thesis.
In the first part of this thesis, we gather prevalent communication systems nowadays and introduce the related research background about 60-GHz band WPAN applications. A V-band millimeter-wave wideband CMOS LC-VCO has been implemented in the second part. By using a voltage-tuning transmission-line switchable capacitor technique, the VCO with 8.7% FTR from 49.56 GHz to 54.08 GHz exhibits a best phase noise of -93.2-dBc/Hz at 1MHz offset. The VCO core consumes 10.8 mW as the output power is better than -17.8 dBm over the whole tuning frequency range. The third part, besides the fundamentals of Mixer and QVCO, is focused on the sub-harmonic mixer design, in which a V-band sub-harmonic mixer integrated with Ka-band QVCO integration is simulated and tapped out in this part. It is designed for a 60-GHz band direct-conversion receiver with a 500-MHz bandwidth IF band with half of LO frequency pumping in from 57-64-GHz RF band. Two sets of Simulation data have been compared and shown: one has the P-1dB of -22 dBm, conversion gain of up to 12 dB and IIP3 of -12 dBm; while the other has the P-1dB of -14 dBm, conversion gian of close to 3.5 dB and IIP3 of 0 dBm. They both perform good port-to-port isolations. With regard to the circuit performance, they’re suitable for the block design in millimeter-wave front-end by utilizing TSMC’s advanced CMOS 90-nm process, which is helpful to the completeness of 60-GHz V-band front-end transceiver integration in the future.
[1] R. Fisher, “60 GHz WPAN standardization within IEEE 802.15.3c,” in Int. Symp. on Signals, Systems, and Electronics Dig., Montreal, QC, Canada, Jul. 30–Aug. 2, 2007, pp. 103–105.
[2] S. Verdu, “Fifty years of Shannon Theory,” IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2057-2078, Oct. 1998.
[3] C. Anderson and T. Rappaport, “In-building wideband partition loss measurements at 2.5 and 60 GHz,” IEEE Trans. Wireless Commun., vol. 3, no. 3, pp. 922–928, May 2004.
[4] A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 717–724, May 1999.
[5] T. H. Lee and A. Hajimiri, “Oscillator phase noise: A tutorial,” IEEE J. Solid-State Circuits, vol. 35, pp. 326–336, Mar. 2000
[6] A. M. Niknejad and H. Hashemi, mm-Wave Silicon Technology: 60 GHz and Beyond, Springer, 2008
[7] L. Li, P. Reynaert, and M. Steyaert, “ Design and Analysis of a 90 nm mm-Wave Oscillator Using Inductive-Division LC Tank,”IEEE J. Solid-State Circuits, vol. 44, no. 7, Jul. 2009
[8] F. Ellinger, T. Morf, G. Buren, C. Kromer, G. Sialm, L. Rodoni, M. Schmatz, and H. Jackel, “60 GHz VCO with wideband tuning range fabricated on VLSI SOI CMOS technology,” in IEEE Int. Microwave Symp. Dig. , Jun. 2004, pp. 1329–1332.
[9] C. Cao and K. K. O, “Millimeter-wave voltage-controlled oscillator in 0.13 um CMOS technology,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1297–1304, Jun. 2006
[10] W. F. Andress and D. Ham, “Recent development in standing-wave oscillator design: Review,” in Radio Frequency Integrated Circuits Symp. Dig., 2004, pp. 119–122.
[11] Liang Wu ; Ng, A. ; Leung, L. ; Luong, H.C., “A 24-GHz and 60-GHz dual-band standing-wave VCO in 0.13µm CMOS process,” in Radio Frequency Integrated Circuits Symp Dig., May 2010, pp. 145–148.
[12] B. Razavi, RF Microelectronics, Ch 5, 6, NJ: Prentice-Jall, 1998.
[13] K. KawaKami, M. Shimozawa, H. Ikematsu, K. Itoh, Y. Isota, and O. Ishida,“A millimeter-wave broadband monolithic even harmonic image rejection mixer,” in IEEE MTT-S Int. Microwave Symp. Dig., pp. 1443-1446, Jun. 1998.
[14] M. Yu, Robert H. Walden, A. E. Schmitz, and M. Lui, “Ka/Q-band doubly balanced MMIC mixers with low LO power,” IEEE Microwave and Guided Wave Letters, vol. 10, no. 10, pp. 424-426, Oct. 2000.
[15] M.-F. Lei, P.-S. Wu, T.-W. Huang, and H. Wang, “Design and analysis of a miniature W-band MMIC subharmonically pumped resistive mixer,” in IEEE MTT-S Int. Microwave Symp. Dig., 2004, pp. 235-238.
[16] M. Goldfarb, E. Balboni, and J. Cavey, “Even harmonic double-balanced active mixer for use in direct conversion receivers,” IEEE J. Solid-State Circuits, vol. 38, no. 10, pp. 1762–1766, Oct. 2003.
[17] J.-H. Tsai and T.-W. Huang, “35–65-GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit applications,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 10, pp.2075–2085, Oct. 2007.
[18] R. Svitek and S. Raman, “5–6 GHz SiGe active I/Q subharmonic mixers with power supply noise effect characterization,” IEEE Microw. Wireless Compon. Lett. , vol. 14, no. 7, pp. 319–321, Jul. 2004.
[19] R. M. KodKani and L. E. Larson, “An integrated 50-GHz SiGe subharmonic mixer/downconverter with a quadrature ring VCO,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2007, pp. 223–226.
[20] B. Jackson and C. E. Saavedra, “A CMOS Ku-band 4 subharmonic mixer,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1351–1359, Jun. 2008.
[21] B. R. Jackson, F. Mazzilli, and C. E. Saavedra, A frequency tripler using a subharmonic mixer and fundamental cancellation, IEEE Trans. Microwave Theory Tech 57, pp.1083–1090, 2009.
[22] K.-Y. Toh, P.-K. Ko, and R. G. Meyer, “An engineering model for short-channel MOS devices,” IEEE J. Solid-State Circuits, vol. 23, no.4, pp. 950–958, Aug. 1988.
[23] S. G. Lee and J. K. Choi, “Current reuse bleeding mixer,” Electron. Lett. , vol. 36, no. 8, pp. 696–697, Apr. 2000.
[24] B. Razavi, “A 60-GHz CMOS receiver front-end,” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 17–22, Jan. 2006.
[25] A. Parsa and B. Razavi, “Anew transceiver architecture for the 60-GHz band,” IEEE J. Solid-State Circuits, vol. 44, no. 3, pp. 751–762, Mar. 2009.
校內:2016-09-02公開