| 研究生: |
張詠裕 Chang, Yung-Yu |
|---|---|
| 論文名稱: |
以循環生成對抗網路實現不同場景間影像轉換 Multi-Domain Image-to-Image Translations based on Generative Adversarial Networks |
| 指導教授: |
王明習
Wang, Ming-Shi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 影像還原 、除霧 、去雜訊 、卷積神經網路 、生成式對抗網路 |
| 外文關鍵詞: | Deblurred, Dehaze, Denoise, Convolutional Neural Networks, Generative Adversarial Networks |
| 相關次數: | 點閱:111 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,深度學習領域有了突破性的發展,掀起了一波波人潮相繼湧入研究此課題,所涵蓋的領域無奇不有。但就影像處理方面的應用,目前被提出來的議題,多數所設計之架構僅致力於單一任務,並藉由誤差數據與參考標準數據兩者成對的數據集訓練而成。得到之效果固然顯著,但因為需要有參考標準數據,對於日後數據集更新會有一定的難度。隨著安全意識的抬頭,電腦視覺輔助系統的需求度也日益提高,以監視攝影設備最為顯著,監視攝影設備可以紀錄事發過程,甚至是利用捕捉畫面進行辨識與偵測,有效嚇止與防範犯罪,然而若是在有霧氣造成視線不良、夜間高感光度拍攝造成影像噪化及拍攝物件高速移動造成影像模糊等原因,造成影像無法輕易用肉眼辨識,甚至導致辨識錯誤的情況發生,為解決此類問題,本文以生成式對抗網路為基礎,搭建一多功能循環生成式對抗網路架構用來執行無監督影像域轉換,其中定義了「退化」、「噪化」、「霧化」與「還原」的影像,訓練架構中的生成模組,藉由神經網路學習多組影像定義域間的轉換關係,將大多數人認為模糊、噪化及霧化的影像轉換成清楚可辨識的圖像,以達到改善無監督影像域轉換的可擴展性。
In recent years, domain translation has been a breakthrough in the field of deep learning. However, most of the issues raised so far are dedicated to a single situation, and trained through paired datasets. The effect is significant, but the defect is that the architectures lack scalability and the paired data update in the future is difficult. The demand for computer vision assistance systems is increasing, and there is more than one mission requirement in some environments. In this Thesis, we propose a multi-domain image translation model which has two advantages in terms of flexibility: one is the depth of the architecture that can be designed according to expectations, and the other is the number of domains that can be designed according to the number of tasks. We demonstrate the effectiveness of our theory on dehaze, debluring, and denoising tasks.
[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. “Generative adversarial nets”, In Advances in Neural Information Processing Systems (NIPS), 8-13 Dec., Palais des Congrès de Montréal, pp. 2672–2680, 2014.
[2] A. Radford, L. Metz, and S. Chintala. “Unsupervised representation learning with deep convolutional generative adversarial networks”, In International Conference on Learning Representations (ICLR), 2 - 4 May, Caribe Hilton, San Juan, Puerto Rico, 2016.
[3] M.-Y. Liu and O. Tuzel. “Coupled generative adversarial networks”, In Advances in Neural Information Processing Systems (NIPS), 5-10 December, Centre Convencions Internacional Barcelona, Barcelona SPAIN, pp. 469–477, 2016.
[4] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb. “Learning from simulated and unsupervised images through adversarial training”, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 21-16 July, Hawaii Convention Center in Honolulu, Hawaii, pp. 2107-2116, 2017.
[5] J. Donahue, P. Krähenbühl, and T. Darrell. “Adversarial feature learning” International Conference on Learning Representations (ICLR), 24 – 26 April, Palais des Congrès Neptune, Toulon, France, 2017.
[6] V. Dumoulin, I. Belghazi, B. Poole, A. Lamb, M. Arjovsky, O. Mastropietro, and A. Courville, “Adversarially Learned Inference”, arXiv preprint arXiv:1606.00704, 2016.
[7] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-Image Translation with Conditional Adversarial Networks”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , 21-16 July, Hawaii Convention Center in Honolulu, Hawaii., pp. 5967–5976, 2017.
[8] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “ Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”, The IEEE International Conference on Computer Vision (ICCV), 21-26 July, Venice, Italy, pp.2223-2232, 2017.
[9] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, VOL 313, pages 504–507, 2006.
[10] M. Arjovsky, S. Chintala, and L. Bottou, “ Wasserstein Generative Adversarial Networks”, Proceedings of the International Conference on Machine Learning (ICML), 6-11 August, Sydney Australia , pp. 214–223, 2017.
[11] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, “ Improved Training of Wasserstein Gans”, Advances in Neural Information Processing Systems (NIPS), 4-9 Dec., Long Beach Convention Center, 2017.
[12] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo, “StarGAN: Unified Generative Adversarial Networks for MultiDomain Image-to-Image Translation”, ArXiv e-prints ArXiv:1711.09020, 2017.
[13] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation”, Proceedings of the Medical Image Computing and Computer-Assisted Intervention (MICCAI), 5-9 October, Granada, Spain, pp. 234–241, 2015.
[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 26 June – 1 July, Caesar's Palace in Las Vegas, Nevada, pp. 770– 778, 2016.
[15] G. Huang, Z. Liu, L. van der Maaten, and K.Q. Weinberger, “Densely connected convolutional networks”. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 21-16 July, Hawaii Convention Center in Honolulu, Hawaii, pp. 2261-2269, 2017.
[16] J. Sun, W. Cao, Z. Xu, and J. Ponce, “Learning a convolutional neural network for non-uniform motion blur removal”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 7-12 June, Boston, MA, pp. 769–777, 2015.
[17] L. Xu, J. S. Ren, C. Liu, and J. Jia, “Deep convolutional neural network for image deconvolution”, In Advances in Neural Information Processing Systems (NIPS) ), 8-13 Dec, Palais des Congrès de Montréal, pp. 1790–1798, 2014.
[18] S. Nah, T. H. Kim and K. M. Lee, “Deep multi-scale convolutional neural network for dynamic scene deblurring”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 21-16 July, Hawaii Convention Center in Honolulu, Hawaii, 2017.
[19] M. Noroozi, P. Chandramouli, and P. Favaro, “Motion Deblurring in the Wild”, German Conference on Pattern Recognition (GCPR), 13-15 September, Basel, Switzerland, pp. 65–77, 2017.
[20] A. Chakrabarti, “ A neural approach to blind motion deblurring”, Proceedings of the European Conference on Computer Vision (ECCV), 8-16 October, Amsterdom,Netherlans, pp. 221–235, 2016.
[21] G. Boracchi and A. Foi, “ Modeling the performance of image restoration from motion blur”, IEEE Transactions on Image Processing, Vol. 21, No. 8, pp. 3502–3517, 2012.
[22]O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin, and J. Matas, “DeblurGAN: blind motion deblurring using conditional adversarial networks” arXiv preprint arXiv:1711.07064, 2017.
[23] B. Li, W. Ren, D. Fu, D. Tao, D. Feng, W. Zeng, and Z. Wang, “RESIDE: A Benchmark for Single Image Dehazing”, arXiv preprint arXiv:1712.04143, 2017.
[24] M. Brown and S. Süsstrunk, “Multi-spectral SIFT for scene category recognition”, Computer Vision and Pattern Recognition (CVPR), 20-25 June, Colorado Springs, CO, USA, USA, pp. 177-184, 2011.
[25] J. Redmon and A. Farhadi, “ Yolo9000: Better, faster, stronger”, Computer Vision and Pattern Recognition (CVPR), 21-16 July, Hawaii Convention Center in Honolulu, Hawaii, pp. 6517–6525, 2017.
[26] J. Redmon and A. Farhadi, “Yolov3:An incremental improvement”, arXiv preprint arXiv:1804.02767, 2018.
[27] B. Cai, X. Xu, K. Jia, C. Qing, and D. Tao. Dehazenet, “An end-to-end system for single image haze removal”, IEEE Transactions on Image Processing, Vol. 25, No. 11, pp. 5187–5198, 2016.