簡易檢索 / 詳目顯示

研究生: 洪品
Hung, Pin-Kun
論文名稱: 利用氧化鋅奈米柱提升發光二極體之光輸出
Improvement on light output of light emitting diodes with ZnO nanorods
指導教授: 洪茂峰
Houng, Mau-Phon
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 114
中文關鍵詞: 氧化鋅奈米柱磷化鋁鎵銦發光二極體
外文關鍵詞: ZnO nanorods, GaAlInP LED
相關次數: 點閱:104下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來氧化鋅奈米材料引起相當大的注視,由於它具有許多特別的特性,如寬能隙、高的激子結合能以及出色的化學與熱穩定性,這些優勢使得ZnO在光電元件上有較高的效率表現。因此,ZnO在近年來被廣泛應用在發光二極體、雷射二極體、紫外光檢測器以及太陽能電池。利用各種化學及物理的沉積技術可以合成出一維的氧化鋅奈米結構,這些方法包含了分子束磊晶、金屬-有機化學氣相沉積、模板法、脈衝雷射沉積和水溶液法。比較上述提到的合成方法,由於水溶液法具有大尺寸製造、低成本及低溫等優點。因此,本論文利用水溶液法合成氧化鋅奈米柱。
    本論文主要分成兩部分,第一部分介紹氧化鋅奈米柱的製備以及其特性;以水溶液法在鍍有氧化鋅摻鋁的玻璃基板上合成出高品質之一維氧化鋅奈米柱陣列,使用的反應物是硝酸鋅與HMT(1:1莫耳比),我們可以藉由改變製程參數去調整奈米柱的高寬比,並討論其成長機制,再利用X光繞射儀(XRD)及光激發光光譜儀(PL)分析氧化鋅的晶體結構與光特性。第二部分則是直接在磷化鋁鎵銦發光二極體上合成氧化鋅奈米柱,並在LED製程後量測其電性以及光性,藉由上述方法,我們使磷化鋁鎵銦發光二極體的亮度提升了60.9%。

    Zinc oxide nano-material has attracted considerable attention over the last few years due to its many especially properties, such as wide bandage, large exciton binding energy, excellent chemical and thermal stability, these benefits confirm the opto-electronic devices fabricated by ZnO material should have highly efficient performance at room temperature. Therefore the ZnO-based devices such as lighting-emitting diodes (LEDs), laser diodes (LDs), UV photodetectors, and solar cells have been recently proposed. A variety of chemical and physical deposition techniques can be used to synthesize one-dimensional of ZnO nanostructure. The methods include molecular beam epitaxy (MBE), metal-organic chemical vapor deposition (MOCVD), template-based growth, pulsed laser deposition and aqueous solution method. Comparing with above-mentioned various synthetic methods, owing to advantages of aqueous solution method such as large-scale fabrication, low-cost and low temperatures. Therefore, we employ aqueous solution method to synthesize the ZnO nanorods in the paper.
    There are two parts in this study. One is the introduction of the properties and fabrication of nanorods. To manufacture an one-dimensional ZnO nanorods array with high quality on the AZO-deposited glass by aqueous solution method , both reactants ratio are of equal concentration used in this experiment were Zn(NO3)2 and HMT(1:1 molar ratio). By controlling parameters in the fabrication which mainly adjust the aspect ratio of nanorods, growth mechanism is discussed. Finally, structural and optical properties were analyzed by measurement of X-ray diffraction (XRD) and PL. In the other part of this thesis, the zinc oxide nanorods formed on the upper surface of red-light LEDs. The optical and electrical measurement can be obtaind after we complete all process. We have demonstrated that there was additional 60.9% improvement in the luminous intensity of GaAlInP LED by employing the above method.

    第一章 緒論 1 1-1 研究背景 1 1-2 研究動機 2 第二章 理論基礎與文獻回顧 4 2-1 氧化鋅薄膜 4 2-1-1 氧化鋅薄膜之電特性 4 2-1-2 氧化鋅薄膜之光特性 5 2-2 AZO薄膜之特性 6 2-3 LED發光效率與表面粗化 6 2-3-1 LED發光效率 7 2-3-2 Fresnel反射 8 2-3-3 司乃耳定律(Snell,s Law)與表面粗化 11 2-4 氧化鋅奈米柱之合成方法 13 2-4-1 水溶液法合成氧化鋅奈米柱 13 2-4-2 水溶液法合成一維氧化鋅奈米結構之理論架構 17 2-4-3 一維奈米柱成長機制 17 第三章 實驗方法與步驟 33 3-1 實驗架構 33 3-2 實驗耗材 34 3-2-1 藥品 34 3-2-2 基材 34 3-3 實驗設備 34 3-3-1 射頻濺鍍機 34 3-3-2 蒸鍍機 36 3-4 量測儀器 36 3-4-1 霍爾量測儀 36 3-4-2 掃描式電子顯微鏡 37 3-4-3 X光繞射分析儀 38 3-4-4 光激發光光譜儀 38 3-4-5 原子力顯微鏡 39 3-4-6 發光二極體測試儀 39 3-5 實驗步驟 39 3-5-1 基板清洗步驟 39 3-5-2 種晶層之製程 41 3-5-3 水溶液法實驗流程 41 3-6 將氧化鋅奈米柱應用於紅光LED上 42 3-6-1 紅光LED晶片的準備 42 3-6-2 晶片清洗 42 3-6-3 種晶層之成長 43 3-6-4 水溶液法實驗流程 44 3-6-5 定義電極區 44 3-6-6 n型與P型電極的沉積 44 第四章 結果與討論 54 4-1 氧化鋅摻鋁薄膜之分析 54 4-1-1表面形貌分析 54 4-1-2微結構分析 54 4-1-3 光激發光特性分析 55 4-1-4 電性分析 56 4-2 氧化鋅奈米柱之分析 56 4-2-1 表面形貌分析 56 4-2-1-1 反應物濃度對奈米柱的影響 56 4-2-1-2 成長溫度對奈米柱的影響 59 4-2-1-3 成長時間對奈米柱的影響 61 4-2-2 微結構分析 63 4-2-2-1 反應物濃度對奈米柱的影響 63 4-2-2-2 成長溫度對奈米柱的影響 63 4-2-2-3 成長時間對奈米柱的影響 63 4-2-3 光激發特性分析 64 4-2-3-1 反應物濃度對奈米柱的影響 64 4-2-3-2 成長溫度對奈米柱的影響 65 4-2-3-3 成長時間對奈米柱的影響 66 4-3 氧化鋅奈米柱應用於紅光LED上 67 4-3-1 在紅光LED上成長氧化鋅奈米柱 67 4-3-2 粗化對LED效率之影響 68 第五章 結論 102 第六章 未來研究方向 104 參考文獻 105

    【1】S Nakamura, “InGaN-based violet laser diodes”, Semicond. Sci. Technol., Vol. 14, pp. R27–R40, 1999.
    【2】W. N. Carr and G. E. Pittman, “One-watt GaAs p-n junction infrared sensor”, Appl. Phys. Lett., Vol. 3, pp. 173-175, 1963.
    【3】M. R. Krames et al., “High-power truncated-inverted-pyramid (AlGa) InP/GaP light-emitting diodes exhibiting >50% external quantum efficiency”, Appl. Phys. Lett., Vol. 75, pp. 2365-2367, 1999.
    【4】R. Windisch et al., “30% external quantum efficiency from surface textured,thin-film light emitting diodes”, IEEE Trans. Electron Devices, Vol. 47, pp. 1492-1498, 2000.
    【5】Shyi-Ming Pan,Ru-Chin Tu,Yu-Mei Fan,Ruey-Chyn Yeh,and Jung-Tsung Hsu, “Improvement of InGaN-GaN Light-Emitting Diodes With Surface-Textured Indium-Tin-Oxide Transparent Ohmic Contacts”, IEEE Photon. Technol. Lett., Vol. 15, pp. 649-651, 2003.
    【6】Jinn-Kong Sheu,Y. S. Lu, Min-Lum Lee, W. C. Lai, C. H. Kuo, Chun-Ju Tun, “Enhanced efficiency of GaN-based light-emitting diodes with periodic textured Ga-doped ZnO transparent contact layer”, Appl. Phys. Lett., Vol. 90, pp. 263511, 2007.
    【7】Liang-Jyi Yan, J. K. Sheu, Wei-Chih Wen, Tien-Fu Liao, Ming-Jong Tsai, and Chih-Sung Chang, “Improved Light Extraction Efficiency in AlGaInP Light-Emitting Diodes by Applying a Periodic Texture on the Surface”, IEEE Photon. Technol. Lett., Vol. 20, no. 20, pp. 1724–1726, 2008.
    【8】Y. Liu, C.R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen,M. Wraback, “Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD”, J. Electron. Mater., Vol. 29, pp. 69-74, 2000.
    【9】V.R. Shinde, T.P. Gujar, C.D. Lokhande, “LPG sensing properties of ZnO films prepared by spray pyrolysis method: Effect of molarity of precursor solution”, Sens. Actuators B., Vol. 120, pp. 551-559, 2007.
    【10】J.B. Lee, H.J. Kim, S.G. Kim, C.S. Hwang, S.H. Hong, Y.H. Shin, N.H.Lee, “Deposition of ZnO thin films by magnetron sputtering for a film bulk acoustic resonator”, Thin Solid Films, Vol. 435, pp. 179–185, 2003.
    【11】U. Manzoor, D.K. Kim, “Synthesis and enhancement of ultraviolet emission by post-thermal treatment of unique zinc oxide comb-shaped dendritic nanostructures”, Scripta Mater., Vol. 54, pp. 807-811, 2006.
    【12】T. Soki, Y. Hatanaka, D.C. Look, “ZnO diode fabricated by excimer-laser doping”, Appl. Phys. Lett., Vol. 76, pp. 3257, 2000.
    【13】A. Ennaoui, S. Siebentritt, M.Ch. Lux-Steiner, W. Riedl, F. Karg, “HIGH-EFFICIENCY Cd-FREE CIGSS THIN-FILM SOLAR CELLS WITH SOLUTION GROWN ZINC COMPOUND BUFFER LAYERS”, Sol. Energy Mater. Sol. Cells, Vol. 67, pp. 31-40, 2001.
    【14】K. Keis, E. Magnusson, H. Lindstrom, S.E. Lindquist,A. Hagfeldt, “5% EFFICIENT PHOTOELECTROCHEMICAL SOLAR CELL BASED ON NANOSTRUCTURED ZnO ELECTRODES”, Sol. Energy Mater. Sol. Cells, Vol. 73, pp. 51-58, 2002.
    【15】C. Agashe, O. Kluth, J. Hüpkes, U. Zastrow, B. Rech, M. Wuttig, “Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films” , J. Appl. Phys., Vol.95, pp. 1911, 2004.
    【16】K.Wasa, “Handbook of Sputter Deposition Technology”, 98, 1992.
    【17】B.Chapman, “Glow Discharge Processes”, John Wiley & Sons.Inc.N.Y., chap.6, 1980.
    【18】D. F. Paraguay, L. W. Estrada, N. D. R. Acosta, E. Andrade, and M.Miki-Yoshida, “Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis”, Thin Solid Films, Vol. 350, pp. 192-202, 1999.
    【19】E. Burstein, “Anomalous Optical Absorption Limit in InSb”, Phys. Rev., Vol. 93, pp. 632-633, 1954.
    【20】T. S. Moss, “The Interpretation of the Properties of Indium Antimonide”, Phy. Soc. London Sect. B, Vol. 67, pp. 775-782, 1954.
    【21】Shyi-Ming Pan,Ru-Chin Tu,Yu-Mei Fan,Ruey-Chyn Yeh,and Jung-Tsung Hsu,“Enhanced Output Power of InGaN–GaN Light-Emitting Diodes With High-Transparency Nickel-Oxide–Indium-Tin-Oxide Ohmic Contacts”, IEEE Photon. Technol. Lett. , Vol. 15, pp. 649-651, 2003.
    【22】Chul Hun,Kug-Seung Lee,Eun-Jeong Kang,and Seong-Ju Park, “Improved light-output and electrical performance of InGaN- based light-emitting diode by microroughening of the p-GaN surface”, J.Appl.Phys., Vol.93, pp.9383-9385, 2003.
    【23】J.J. Wu, S.C. Liu, “Low-Temperature Growth of Well- Aligned ZnO Nanorods by Chemical Vapor Deposition”, Adv. Mater., Vol. 14, pp. 215-218, 2002.
    【24】Z.W. Pan, Z.R. Dai, Z.L. Wang, “Nanobelts of Semiconducting Oxides”, Science, Vol. 291, pp. 1947-1949, 2001.
    【25】Y. Sun, G.M. Fuge, M.N.R. Ashfold, “Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods”, Chem. Phys. Lett., Vol. 396, pp. 21, 2004.
    【26】S. Choopun, H. Tabata, T. Kawai, “Self-assembly ZnO nanorods by pulsed laser deposition under argon atmosphere”, J. Cryst. Growth, Vol. 274, pp. 167-172, 2005.
    【27】Jiansheng Jie, Guanzhong Wang, Qingtao Wang, Yiming Chen, Xinhai Han, Xiaoping Wangand J. G. Hou, “Synthesis and Characterization of Aligned ZnO Nanorods on Porous Aluminum Oxide Template”, J. Phys. Chem. B, Vol. 108, pp. 11976-11980, 2004.
    【28】Y. Li, G.W. Meng, L.D. Zhang, F. Phillipp, “Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties”, Appl. Phys. Lett., Vol. 76 , pp. 2011, 2000.
    【29】R. Liu, A.A. Vertegel, E.W. Bohannan, T.A. Sorenson,J.A. Switzer, “Epitaxial Electrodeposition of Zinc Oxide Nanopillars on Single-Crystal Gold”,Chem. Mater., Vol. 13, pp. 508–512, 2001.
    【30】Yanhong Tong,Yichun Liu,Lin Dong,|Dongxu Zhao,Jiying Zhang,Youming Lu,Dezhen Shen,and Xiwu Fan, “Growth of ZnO Nanostructures with Different Morphologies by Using Hydrothermal Technique”, J. Phys. Chem. B, Vol. 110, pp. 20263-20267, 2006.
    【31】Quanchang Li,Vageesh Kumar,Yan Li,Haitao Zhang,Tobin J. Marks,and Robert P. H. Chang.,“Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions”, Chem. Mater., Vol. 17, pp. 1001-1006, 2005.
    【32】Youngjo Tak and Kijung Yong, “Controlled Growth of Well-Aligned ZnO Nanorod Array Using a Novel Solution Method”, J. Phys. Chem. B, Vol. 109, pp. 19263-19269, 2005.
    【33】Q Ahsanulhaq, A Umar and Y B Hahn, “Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties”, Nanotechnology , Vol. 18, pp. 115603, 2007.
    【34】Strom J G Jr and Jun H W, “Kinetics of hydrolysis of methenamine”, J. Pharm. Sci., Vol. 69, pp. 1261, 1980.
    【35】Gao P X and Wang Z L, “Substrate Atomic-Termination-Induced Anisotropic Growth of ZnO Nanowires/Nanorods by the VLS Process”, J. Phys. Chem. B , Vol. 108, pp. 7534, 2004.
    【36】Wen-Jun Li, Er-Wei Shi, Wei-Zhuo Zhong, Zhi-Wen Yin, “Growth mechanism and growth habit of oxide crystals”, J. Cryst. Growth, Vol. 203, pp. 186-96, 1999.
    【37】L. Spanhel, M. A. Anderson, “Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids”, J. Am. Chem. Soc., Vol. 113, pp. 2826, 1991.
    【38】C. Pacholski, A. Kornowski, H. Weller, “Self-Assembly of ZnO: From Nanodots to Nanorods”, Angew. Chem. Int. Ed., Vol. 41, pp. 1188, 2002.
    【39】K. Govender, D. S. Boyle, P. B. Kenway, P. O’Brien, “Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution”, J. Mater.Chem., Vol. 14, pp. 2575, 2004.
    【40】R. W. Nosker, P. Mark, J. D. Levine, “Polar surfaces of wurtzite and zincblende lattices”, Surf. Sci., Vol. 19, pp. 291, 1970.
    【41】Quanchang Li,Vageesh Kumar,Yan Li,Haitao Zhang,Tobin J. Marks, and Robert P. H. Chang, “Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions”, Chem. Mater., Vol. 17, pp. 1001-1006, 2005.
    【42】Greene, L. E.; Law, M.; Tan, D. H.; Montano, M.; Goldberger, J.; Somorjai, G.; Yang, “General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds”, Nano Lett., Vol. 5, pp. 1231-1236, 2005.
    【43】Yanhong Tong,Yichun Liu,Lin Dong,Dongxu Zhao,Jiying Zhang,Youming Lu,Dezhen Shen,and Xiwu Fan, “Growth of ZnO Nanostructures with Different Morphologies by Using Hydrothermal Technique”, J. Phys. Chem. B, Vol. 110, pp. 20263-20267, 2006.
    【44】Jaejin Song and Sangwoo Lim, “Effect of Seed Layer on the Growth of ZnO Nanorods”, J. Phys. Chem. C, Vol. 111, pp. 596-600, 2007.
    【45】陳靜怡, “氧化鋅中介層對ITO透明導電膜性質之影響”, 成功大學材料科學及工程學系碩士論文, 2002.
    【46】莊達人, “VLSI製造技術”, 高立圖書, 2003.
    【47】龔柏誠,“氧化鋅之MIS 二極體的研究”, 成功大學電機工程學系微電子所碩士論文, 2006.
    【48】呂宏基,“利用多孔陽極氧化鋁提升發光二極體光輸出之研究”, 成功大學電機工程學系微電子所碩士論文, 2007.
    【49】J. Ye, S. Gu, S. Zhu, T. Chen, L. Hu, F. Qin, R. Zhang, Y. Shi, Y. Zhang, “The growth and annealing of single crystalline ZnO films by low-pressure MOCVD”, J. Crystal Growth, Vol. 243, pp. 151-156, 2002.
    【50】Zhuo Wang,Xue-feng Qian,Jie Yin,and Zi-kang Zhu, “Aqueous solution fabrication of large-scale arrayed obelisk-like zinc oxide nanorods with high efficiency”, J. Solid State Chem. , Vol. 177, pp. 2144-2149, 2004.
    【51】Xiaoxin Liu, Zhengguo Jin, Shaojing Bu, Juan Zhao and Ke Yu, “Preparation of ZnO nanorods and special lath-like crystals by aqueous chemical growth (ACG) method”, Mater. Science and Engineering B, Vol. 129, pp. 139–143, 2006.
    【52】Min Guo,Peng Diao and Shengmin Cai, “Hydrothermal growth of well-aligned ZnO nanorod arrays:Dependence of morphology and alignment ordering upon preparing conditions”, J. Solid State Chem., Vol. 178, pp. 1864–1873, 2005.
    【53】L. Vayssieres, K. Keis, S.-E. Lindquist, A. Hagfeldt, “Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO”, J. Phys. Chem. B, Vol. 105, pp. 3350-3352, 2001.
    【54】Lori E. Greene, Matt Law, Joshua Goldberger Franklin Kim, Justin C. Johnson, Yanfeng Zhang, Richard J. Saykally, and Peidong Yang, “Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays”, Angew. Chem. Int. Ed., Vol. 42, pp. 3031-3034, 2003.
    【55】X. Liu, X. Wu, H. Cao, R. P. H. Chang, “Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition”, J. Appl. Phys., Vol. 95, pp. 3141, 2004.
    【56】D. Li, Y. H. Leung, A. B. Djurisˇic´, Z. T. Liu, M. H. Xie, S. L. Shi,S. J. Xu, W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods”, Appl. Phys. Lett., Vol. 85,pp. 1601, 2004.
    【57】X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films”, Appl. Phys. Lett., Vol. 78, pp. 2285, 2001.
    【58】RBMCross1,MMDe Souza and E M Sankara Narayanan, “A low temperature combination method for the production of ZnO nanowires”, Nanotechnology, Vol. 16, pp. 2188-2192, 2005.
    【59】Yu-Yun Peng, Tsung-Eong Hsieh and Chia-Hung Hsu, “White-light emitting ZnO–SiO2 nanocomposite thin films prepared by the target-attached sputtering method”, Nanotechnology , Vol. 17, pp. 174-180, 2006.
    【60】Wu X L, Siu G G, Fu C L and Ong H C, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films”, Appl. Phys. Lett., Vol. 78, pp. 2285, 2001.
    【61】R. W. Ditchburn, “Light” 2nd, London, Blackie, 1963.
    【62】Sung Jin An,Jee Hae Chae,Gyu-Chul Yi,and Gil H. Park, “Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays”, Appl. Phys. Lett., Vol. 92, pp. 121108, 2008.
    【63】Kyoung-Kook Kim, Sam-dong Lee,Hyunsoo Kim,Jae-Chul Park,Sung-Nam Lee,Youngsoo Park,Seong-Ju Park,and Sang-Woo Kim, “Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution”, Appl. Phys. Lett., Vol. 94, pp. 071118, 2009.
    【64】F. A. Jenkins and H. E. White, “Fundamentals of Optics” 4th, New York, Mcgraw-Hill, 1976.
    【65】K. H. Kim, K. C. Park, and D. Y. Ma, “Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering”, J. Appl. Phys., Vol. 81, pp. 7764-7772, 1997.

    下載圖示 校內:2011-07-15公開
    校外:2012-07-15公開
    QR CODE