簡易檢索 / 詳目顯示

研究生: 凌倫翎
Ling, Lun-Ling
論文名稱: 菸鹼醯胺腺嘌呤二核甘酸磷酸氧化酶缺陷之肺部嗜中性粒細胞和巨噬細胞上程序性死亡配體1之低表現影響自然淋巴球細胞群並加重過敏性肺部炎症
NOX2-deficient Pulmonary Neutrophils and Macrophages Have Lower PD-L1 Expression and May Aggravate Allergic Lung Inflammation through Affecting ILC Populations
指導教授: 謝奇璋
Shieh, Chi-Chang
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 55
中文關鍵詞: 嗜中性白血球自然免疫類淋巴球細胞巨噬細胞巨噬細胞極化程序性死亡蛋白1程序性細胞死亡蛋白配體 1過敏性氣喘
外文關鍵詞: Neutrophils, Innate lymphoid cells, Macrophages, M1/M2 polarization, PD-1, PD-L1, Allergic asthma
相關次數: 點閱:146下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract I 中文摘要 III 致謝 V Abbreviations VI Chapter 1. Introduction 1 1.1 The exacerbation of allergic asthma 2 1.1.1 Dermatophagoides pteronyssinus (Der p) and LPS initiates allergic inflammation in the lung 2 1.2 Reactive oxygen species (ROS) and NADPH OXIDASE 2(NOX2) 3 1.2.1 NADPH oxidase 2 is an essential regulator in allergen-induced airway inflammation 3 1.3 The NOX2-derived ROS may regulate PD-L1 expression 4 1.4 The role of PD-1 in innate lymphoid cells (ILCs) 4 1.5 The role of PD-L1 in macrophage polarization 5 1.6 Research goals 6 Chapter 2. Materials and Methods 7 2.1 Experimental animal 8 2.2 Allergen exposure experiment 8 2.2.1 Preparation of Der p extract 8 2.2.2 Preparation of Der p extract along with LPS 9 2.2.3 Administration of Der p extract along with LPS exposure experiment 9 2.3 Measurement of airway responsiveness 9 2.4 Lung tissue staining, and histology examination 9 2.4.1 Hematoxylin and eosin (H&E) staining 10 2.5 Enzyme-linked immunosorbent assay (ELISA) 10 2.5.1 Measurement of cytokines 10 2.6 Isolation of pulmonary cell from lung tissue by flow cytometric analysis 10 2.6.1 Detection of macrophage phenotypes and cytokines by flow cytometric analysis 11 2.6.2 Detection of pulmonary ILC subsets by flow cytometric analysis 11 2.6.3 Detection of PD-1 and PD-L1 expressions by flow cytometric analysis 12 2.7 Statistical analysis 13 Chapter 3. Results 14 3.1 Der p extract-LPS stimulations induced more weight loss and more severe AHR in Cybb-/- mice when compared with WT mice 15 3.2 Der p extract-LPS stimulations promoted more cell infiltration in the inflammatory lung of Cybb-/- mice when compared with WT mice 15 3.3 Elevated levels of IL-17A and IL-1β were in asthmatic lung of Cybb-/- mice 16 3.4 Cybb-/- mice exhibited increased numbers of pulmonary neutrophils and AMs in response to Der p extract-LPS stimulations 16 3.5 Cybb-/- mice showed higher induction of pulmonary ILC2s and ILC3s upon exposure to Der p extract-LPS stimulations 17 3.6 The pulmonary neutrophils in the asthmatic lung of Cybb-/- mice exhibited lower PD-L1 expression when compared with WT mice 18 3.7 Cybb-/- AMs showed higher level of TNF-α in comparison with WT mice 19 3.8 The Cybb-/- AMs primarily comprised of M1 macrophages while WT AMs mainly comprised of M2 macrophages 19 3.9 Cybb-/- M1 AMs expressed lower level of PD-L1 when compared with WT M1 AMs 20 Chapter 4. Discussion 22 4.1 Redox regulated PD-L1 expressions on neutrophil and AM to modulate downstream cell responses 23 4.2 Oxidative stress elicits macrophage polarization through regulating PD-L1 expression 24 4.3 The cell interaction between neutrophils/macrophages and ILCs in exacerbated lung inflammation 25 Chapter 5. Figure and Legends 27 Figure 1 28 Cybb-/- mice showed enhanced AHR while lowed body weight after challenged with Der p extract-LPS stimulations when compared with WT mice on day 12 29 Figure 2 30 Cybb-/- mice expressed enhanced inflammatory immune cell infiltration and type 3 lung inflammation after Der p-LPS stimulations 31 Figure 3 32 The gating strategies of pulmonary neutrophil, alveolar macrophage, interstitial macrophage and eosinophil by flow cytometry in lung tissue of WT and Cybb-/- mice 33 Figure 4 34 Increased levels neutrophil, eosinophil and macrophage were detected in inflammatory lung of WT and Cybb-/- mice 35 Figure 5 36 Pulmonary ILC1, ILC2, and ILC3 by flow cytometry in lung tissue of WT and Cybb-/- mice 37 Figure 6 38 The levels of ILC2 and ILC3 increased in allergic lung inflammation of WT and Cybb-/- mice 39 Figure 7 40 The geometric means of PD-L1 expressions on neutrophil in lung inflammation from WT and Cybb-/- mice 41 Figure 8 42 The percentages of TNF-α and Arg-1 in total AM in lung inflammation from WT and Cybb-/- mice 43 Figure 9 44 The percentages of M0, M1, and M2 AMs and their PD-L1 expressions in Der p-LPS induced asthmatic lung from WT and Cybb-/- mice 45 Figure 10 46 Cybb-/- mice result in decreased PD-L1 expression on pulmonary neutrophils and AM polarization towards the M1 phenotype with reduced PD-L1 expression, leading to the exacerbation of lung inflammation and increased ILC3s 46 Table 1 47 Representative gating strategy for the identification of ILCs in the lung tissue from WT and Cybb-/- inflammatory lungs 47 Table 2 48 Antibodies for detecting cell populations, flow cytometry analysis 48 Chapter 6. References 50

    1 Busse, W. W. The relationship of airway hyperresponsiveness and airway inflammation: Airway hyperresponsiveness in asthma: its measurement and clinical significance. Chest 138, 4s-10s, doi:10.1378/chest.10-0100 (2010).
    2 Kuruvilla, M. E., Lee, F. E. & Lee, G. B. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin Rev Allergy Immunol 56, 219-233, doi:10.1007/s12016-018-8712-1 (2019).
    3 Crisford, H. et al. Neutrophils in asthma: the good, the bad and the bacteria. Thorax 76, 835-844, doi:10.1136/thoraxjnl-2020-215986 (2021).
    4 Guerau-de-Arellano, M. & Britt, R. D., Jr. Sterols in asthma. Trends Immunol 43, 792-799, doi:10.1016/j.it.2022.08.003 (2022).
    5 Chevigné, A. & Jacquet, A. Emerging roles of the protease allergen Der p 1 in house dust mite-induced airway inflammation. J Allergy Clin Immunol 142, 398-400, doi:10.1016/j.jaci.2018.05.027 (2018).
    6 Shin, J. W. et al. A unique population of neutrophils generated by air pollutant-induced lung damage exacerbates airway inflammation. J Allergy Clin Immunol 149, 1253-1269.e1258, doi:10.1016/j.jaci.2021.09.031 (2022).
    7 Xia, M. et al. Neutrophil activation and NETosis are the predominant drivers of airway inflammation in an OVA/CFA/LPS induced murine model. Respir Res 23, 289, doi:10.1186/s12931-022-02209-0 (2022).
    8 Gao, H., Ying, S. & Dai, Y. Pathological Roles of Neutrophil-Mediated Inflammation in Asthma and Its Potential for Therapy as a Target. J Immunol Res 2017, 3743048, doi:10.1155/2017/3743048 (2017).
    9 Fahy, J. V. Type 2 inflammation in asthma--present in most, absent in many. Nat Rev Immunol 15, 57-65, doi:10.1038/nri3786 (2015).
    10 Ricciardolo, F. L. M. et al. Characterization of T2-Low and T2-High Asthma Phenotypes in Real-Life. Biomedicines 9, doi:10.3390/biomedicines9111684 (2021).
    11 Nauseef, W. M. Biological roles for the NOX family NADPH oxidases. J Biol Chem 283, 16961-16965, doi:10.1074/jbc.R700045200 (2008).
    12 Cachat, J., Deffert, C., Hugues, S. & Krause, K. H. Phagocyte NADPH oxidase and specific immunity. Clin Sci (Lond) 128, 635-648, doi:10.1042/cs20140635 (2015).
    13 Panday, A., Sahoo, M. K., Osorio, D. & Batra, S. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol 12, 5-23, doi:10.1038/cmi.2014.89 (2015).
    14 Moghadam, Z. M., Henneke, P. & Kolter, J. From Flies to Men: ROS and the NADPH Oxidase in Phagocytes. Front Cell Dev Biol 9, 628991, doi:10.3389/fcell.2021.628991 (2021).
    15 Singel, K. L. & Segal, B. H. NOX2-dependent regulation of inflammation. Clin Sci (Lond) 130, 479-490, doi:10.1042/cs20150660 (2016).
    16 De Ravin, S. S. et al. Chronic granulomatous disease as a risk factor for autoimmune disease. J Allergy Clin Immunol 122, 1097-1103, doi:10.1016/j.jaci.2008.07.050 (2008).
    17 Banerjee, E. R. & Henderson, W. R., Jr. Defining the molecular role of gp91phox in the immune manifestation of acute allergic asthma using a preclinical murine model. Clin Mol Allergy 10, 2, doi:10.1186/1476-7961-10-2 (2012).
    18 Rosanna, D. P. & Salvatore, C. Reactive oxygen species, inflammation, and lung diseases. Curr Pharm Des 18, 3889-3900, doi:10.2174/138161212802083716 (2012).
    19 Zeng, M. Y., Miralda, I., Armstrong, C. L., Uriarte, S. M. & Bagaitkar, J. The roles of NADPH oxidase in modulating neutrophil effector responses. Mol Oral Microbiol 34, 27-38, doi:10.1111/omi.12252 (2019).
    20 Stoiber, W., Obermayer, A., Steinbacher, P. & Krautgartner, W. D. The Role of Reactive Oxygen Species (ROS) in the Formation of Extracellular Traps (ETs) in Humans. Biomolecules 5, 702-723, doi:10.3390/biom5020702 (2015).
    21 Krishnamoorthy, N. et al. Neutrophil cytoplasts induce T(H)17 differentiation and skew inflammation toward neutrophilia in severe asthma. Sci Immunol 3, doi:10.1126/sciimmunol.aao4747 (2018).
    22 Qu, J., Li, Y., Zhong, W., Gao, P. & Hu, C. Recent developments in the role of reactive oxygen species in allergic asthma. J Thorac Dis 9, E32-e43, doi:10.21037/jtd.2017.01.05 (2017).
    23 Cobb, L. M. & Verneris, M. R. Therapeutic manipulation of innate lymphoid cells. JCI Insight 6, doi:10.1172/jci.insight.146006 (2021).
    24 Singh, A. K., Stock, P. & Akbari, O. Role of PD-L1 and PD-L2 in allergic diseases and asthma. Allergy 66, 155-162, doi:10.1111/j.1398-9995.2010.02458.x (2011).
    25 Bailly, C. Regulation of PD-L1 expression on cancer cells with ROS-modulating drugs. Life Sci 246, 117403, doi:10.1016/j.lfs.2020.117403 (2020).
    26 Liao, Y. C. et al. NOX2-Deficient Neutrophils Facilitate Joint Inflammation Through Higher Pro-Inflammatory and Weakened Immune Checkpoint Activities. Front Immunol 12, 743030, doi:10.3389/fimmu.2021.743030 (2021).
    27 Choi, E. J., Jeon, C. H. & Lee, I. K. Ferric Ammonium Citrate Upregulates PD-L1 Expression through Generation of Reactive Oxygen Species. J Immunol Res 2022, 6284124, doi:10.1155/2022/6284124 (2022).
    28 Morita, H., Moro, K. & Koyasu, S. Innate lymphoid cells in allergic and nonallergic inflammation. J Allergy Clin Immunol 138, 1253-1264, doi:10.1016/j.jaci.2016.09.011 (2016).
    29 Lai, D. M., Shu, Q. & Fan, J. The origin and role of innate lymphoid cells in the lung. Mil Med Res 3, 25, doi:10.1186/s40779-016-0093-2 (2016).
    30 Drake, L. Y. & Kita, H. Group 2 innate lymphoid cells in the lung. Adv Immunol 124, 1-16, doi:10.1016/b978-0-12-800147-9.00001-7 (2014).
    31 Diefenbach, A., Colonna, M. & Koyasu, S. Development, differentiation, and diversity of innate lymphoid cells. Immunity 41, 354-365, doi:10.1016/j.immuni.2014.09.005 (2014).
    32 Mariotti, F. R., Quatrini, L., Munari, E., Vacca, P. & Moretta, L. Innate Lymphoid Cells: Expression of PD-1 and Other Checkpoints in Normal and Pathological Conditions. Front Immunol 10, 910, doi:10.3389/fimmu.2019.00910 (2019).
    33 Helou, D. G. et al. PD-1 pathway regulates ILC2 metabolism and PD-1 agonist treatment ameliorates airway hyperreactivity. Nat Commun 11, 3998, doi:10.1038/s41467-020-17813-1 (2020).
    34 Allard, B., Panariti, A. & Martin, J. G. Alveolar Macrophages in the Resolution of Inflammation, Tissue Repair, and Tolerance to Infection. Front Immunol 9, 1777, doi:10.3389/fimmu.2018.01777 (2018).
    35 Saradna, A., Do, D. C., Kumar, S., Fu, Q. L. & Gao, P. Macrophage polarization and allergic asthma. Transl Res 191, 1-14, doi:10.1016/j.trsl.2017.09.002 (2018).
    36 Lambrecht, B. N. Alveolar macrophage in the driver's seat. Immunity 24, 366-368, doi:10.1016/j.immuni.2006.03.008 (2006).
    37 Ginhoux, F. & Guilliams, M. Tissue-Resident Macrophage Ontogeny and Homeostasis. Immunity 44, 439-449, doi:10.1016/j.immuni.2016.02.024 (2016).
    38 Naeem, A., Rai, S. N. & Pierre, L. in StatPearls (StatPearls Publishing Copyright © 2023, StatPearls Publishing LLC., 2023).
    39 Hussell, T. & Bell, T. J. Alveolar macrophages: plasticity in a tissue-specific context. Nat Rev Immunol 14, 81-93, doi:10.1038/nri3600 (2014).
    40 Zhang, Y. et al. ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res 23, 898-914, doi:10.1038/cr.2013.75 (2013).
    41 Lu, D. et al. Beyond T Cells: Understanding the Role of PD-1/PD-L1 in Tumor-Associated Macrophages. J Immunol Res 2019, 1919082, doi:10.1155/2019/1919082 (2019).
    42 Hammad, H. & Lambrecht, B. N. The basic immunology of asthma. Cell 184, 1469-1485, doi:10.1016/j.cell.2021.02.016 (2021).
    43 Peters, M. C. et al. A Transcriptomic Method to Determine Airway Immune Dysfunction in T2-High and T2-Low Asthma. Am J Respir Crit Care Med 199, 465-477, doi:10.1164/rccm.201807-1291OC (2019).
    44 Holgate, S. T. et al. Asthma. Nat Rev Dis Primers 1, 15025, doi:10.1038/nrdp.2015.25 (2015).
    45 Wakashin, H. et al. IL-23 and Th17 cells enhance Th2-cell-mediated eosinophilic airway inflammation in mice. Am J Respir Crit Care Med 178, 1023-1032, doi:10.1164/rccm.200801-086OC (2008).
    46 Morris, G., Gevezova, M., Sarafian, V. & Maes, M. Redox regulation of the immune response. Cell Mol Immunol 19, 1079-1101, doi:10.1038/s41423-022-00902-0 (2022).
    47 Orimo, K. et al. Characteristics of tissue-resident ILCs and their potential as therapeutic targets in mucosal and skin inflammatory diseases. Allergy 76, 3332-3348, doi:10.1111/all.14863 (2021).
    48 Kim, J. et al. Innate immune crosstalk in asthmatic airways: Innate lymphoid cells coordinate polarization of lung macrophages. J Allergy Clin Immunol 143, 1769-1782.e1711, doi:10.1016/j.jaci.2018.10.040 (2019).
    49 Balhara, J. & Gounni, A. S. The alveolar macrophages in asthma: a double-edged sword. Mucosal Immunol 5, 605-609, doi:10.1038/mi.2012.74 (2012).
    50 Yao, Y., Xu, X. H. & Jin, L. Macrophage Polarization in Physiological and Pathological Pregnancy. Front Immunol 10, 792, doi:10.3389/fimmu.2019.00792 (2019).
    51 Sun, F. et al. Alveolar Macrophages Inherently Express Programmed Death-1 Ligand 1 for Optimal Protective Immunity and Tolerance. J Immunol 207, 110-114, doi:10.4049/jimmunol.2100046 (2021).
    52 Wei, Y. et al. PD-L1 induces macrophage polarization toward the M2 phenotype via Erk/Akt/mTOR. Exp Cell Res 402, 112575, doi:10.1016/j.yexcr.2021.112575 (2021).
    53 Zhao, S. et al. Lipopolysaccharides promote a shift from Th2-derived airway eosinophilic inflammation to Th17-derived neutrophilic inflammation in an ovalbumin-sensitized murine asthma model. J Asthma 54, 447-455, doi:10.1080/02770903.2016.1223687 (2017).
    54 Radermecker, C. et al. Locally instructed CXCR4(hi) neutrophils trigger environment-driven allergic asthma through the release of neutrophil extracellular traps. Nat Immunol 20, 1444-1455, doi:10.1038/s41590-019-0496-9 (2019).
    55 Gao, X. P. et al. Role of NADPH oxidase in the mechanism of lung neutrophil sequestration and microvessel injury induced by Gram-negative sepsis: studies in p47phox-/- and gp91phox-/- mice. J Immunol 168, 3974-3982, doi:10.4049/jimmunol.168.8.3974 (2002).
    56 Koay, M. A. et al. Impaired pulmonary NF-kappaB activation in response to lipopolysaccharide in NADPH oxidase-deficient mice. Infect Immun 69, 5991-5996, doi:10.1128/iai.69.10.5991-5996.2001 (2001).
    57 Brandes, R. P. et al. Role of increased production of superoxide anions by NAD(P)H oxidase and xanthine oxidase in prolonged endotoxemia. Hypertension 33, 1243-1249, doi:10.1161/01.hyp.33.5.1243 (1999).
    58 Ben-Shaul, V. et al. The effect of natural antioxidants, NAO and apocynin, on oxidative stress in the rat heart following LPS challenge. Toxicol Lett 123, 1-10, doi:10.1016/s0378-4274(01)00369-1 (2001).
    59 Yang, C. S. et al. Roles of peroxiredoxin II in the regulation of proinflammatory responses to LPS and protection against endotoxin-induced lethal shock. J Exp Med 204, 583-594, doi:10.1084/jem.20061849 (2007).
    60 DeLeo, F. R. et al. Neutrophils exposed to bacterial lipopolysaccharide upregulate NADPH oxidase assembly. J Clin Invest 101, 455-463, doi:10.1172/jci949 (1998).
    61 Zhang, W. J., Wei, H. & Frei, B. Genetic deficiency of NADPH oxidase does not diminish, but rather enhances, LPS-induced acute inflammatory responses in vivo. Free Radic Biol Med 46, 791-798, doi:10.1016/j.freeradbiomed.2008.12.003 (2009).
    62 Ritprajak, P. & Azuma, M. Intrinsic and extrinsic control of expression of the immunoregulatory molecule PD-L1 in epithelial cells and squamous cell carcinoma. Oral Oncol 51, 221-228, doi:10.1016/j.oraloncology.2014.11.014 (2015).
    63 Parry, R. V. et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 25, 9543-9553, doi:10.1128/mcb.25.21.9543-9553.2005 (2005).
    64 Chemnitz, J. M., Parry, R. V., Nichols, K. E., June, C. H. & Riley, J. L. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol 173, 945-954, doi:10.4049/jimmunol.173.2.945 (2004).
    65 Sharpe, A. H. & Pauken, K. E. The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol 18, 153-167, doi:10.1038/nri.2017.108 (2018).
    66 Tan, H. Y. et al. The Reactive Oxygen Species in Macrophage Polarization: Reflecting Its Dual Role in Progression and Treatment of Human Diseases. Oxid Med Cell Longev 2016, 2795090, doi:10.1155/2016/2795090 (2016).
    67 Cai, H., Zhang, Y., Wang, J. & Gu, J. Defects in Macrophage Reprogramming in Cancer Therapy: The Negative Impact of PD-L1/PD-1. Front Immunol 12, 690869, doi:10.3389/fimmu.2021.690869 (2021).
    68 Hams, E., Bermingham, R. & Fallon, P. G. Macrophage and Innate Lymphoid Cell Interplay in the Genesis of Fibrosis. Front Immunol 6, 597, doi:10.3389/fimmu.2015.00597 (2015).
    69 Mizuno, S. et al. Cross-talk between RORγt+ innate lymphoid cells and intestinal macrophages induces mucosal IL-22 production in Crohn's disease. Inflamm Bowel Dis 20, 1426-1434, doi:10.1097/mib.0000000000000105 (2014).
    70 Klose, C. S. N. & Artis, D. Innate lymphoid cells control signaling circuits to regulate tissue-specific immunity. Cell Res 30, 475-491, doi:10.1038/s41422-020-0323-8 (2020).
    71 Shen, C. et al. PD-1 Affects the Immunosuppressive Function of Group 2 Innate Lymphoid Cells in Human Non-Small Cell Lung Cancer. Front Immunol 12, 680055, doi:10.3389/fimmu.2021.680055 (2021).
    72 Akama, Y. et al. The Role of Innate Lymphoid Cells in the Regulation of Immune Homeostasis in Sepsis-Mediated Lung Inflammation. Diagnostics (Basel) 10, doi:10.3390/diagnostics10100808 (2020).
    73 Teng, F. et al. ILC3s control airway inflammation by limiting T cell responses to allergens and microbes. Cell Rep 37, 110051, doi:10.1016/j.celrep.2021.110051 (2021).
    74 Taylor, S. L. et al. Inflammatory phenotypes in patients with severe asthma are associated with distinct airway microbiology. J Allergy Clin Immunol 141, 94-103.e115, doi:10.1016/j.jaci.2017.03.044 (2018).
    75 Ashrafizadeh, M. et al. PD-1/PD-L1 axis regulation in cancer therapy: The role of long non-coding RNAs and microRNAs. Life Sci 256, 117899, doi:10.1016/j.lfs.2020.117899 (2020).

    無法下載圖示 校內:2028-08-09公開
    校外:2028-08-09公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE