簡易檢索 / 詳目顯示

研究生: 李岳哲
Li, Yueh-Che
論文名稱: 新穎3D奈米結構金屬氧化物堆疊式異質接面二氧化碳氣體感測器之研製
Studies of 3D Nano Structures Metal Oxide Tandem Heterojunctions for CO2 Gas Sensing Applications
指導教授: 方炎坤
Fang, Yean-Kuen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 106
中文關鍵詞: 二氧化碳氣體感測器3D奈米柱堆疊式結構
外文關鍵詞: Carbon dioxide(CO2), Nano structures, Tandem structures
相關次數: 點閱:84下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討新穎3D奈米柱狀結構金屬氧化物堆疊式異質接面二氧化碳氣體感測器之研製。吾人先利用硝酸銀及氫氟酸之蝕刻溶液於P型(100)矽基板形成奈米柱狀結構,利用射頻濺鍍系統(Sputtering system)成長氧化銅(CuO)薄膜,再濺鍍成長本質絕緣層三氧化二鋁(Al2O3)薄膜於其上,然後濺鍍上二氧化錫(SnO2)完成SnO2/Al2O3/CuO (PIN)異質接面感測組合。接著以金屬(Cu或Ag)做為連接層及重複上述步驟做成SnO2/Al2O3/CuO (PIN) 堆疊式異質接面。最後再蒸鍍金屬鈀(Pd)及鋁(Al)分別於矽基板最上層及背面作為催化層及金屬接觸層完成Pd/SnO2/Al2O3/CuO/Metal/SnO2/Al2O3/CuO/P-Si/Al 3D奈米結構金屬氧化物堆疊式異質接面二氧化碳氣體感測器元件。
    吾人利用EDX、AFM及SEM分別量測各別薄膜的結晶及觀察他們的表面結構和厚度來探討這些材料的基本特性及做最佳選擇。此外,本研究共製作四種不同結構元件來比較其感測特性:(1)使用不同本質絕緣層材料(Al2O3、HfO2),(2)使用不同金屬(Ag、Cu)做為連接層,(3)比較結構為平面堆疊式結構及單層3D奈米柱狀結構,(4)同時使用3D奈米柱狀及堆疊式結構。
    實驗結果顯示,本質絕緣層為氧化鋁(~8.9eV)較二氧化鉿(~5.7eV)有較大的能隙,可更有效地降低元件之漏電流;又以Ag為連接層的堆疊式結構比以銅為連接層的堆疊是有較佳的感測特性。這是因為添加適量的銀會提高感測層的化學活性,增強對二氧化碳的吸附反應,在吸附過程中金屬銀(Ag)在材料中得以重新分佈,提高了其自身活性並增強對二氧化碳吸附反應,使得感測器對氣體的靈敏度提升。相較於平面式結構,以銀為連接層的堆疊式結構,在二氧化碳濃度3000ppm時,靈敏度可由554%提升至796%。此外,3D奈米柱狀結構者,因可有效增加氣體接觸之面積/體積比,及增加氣體分子的吸附能力,故相較於平面薄膜式者,靈敏度也由554%提升至812%。如同時使用3D奈米柱狀及堆疊結構,則靈敏度更由554%提升至2187%。
    最後,值得一提的是本研究發展出之3D奈米柱狀PIN 堆疊式二氧化碳感測器不但選擇性好,對O2及酒精氣體無明顯反應。且其特性也較以往文獻發表者為佳。如在150℃,濃度3000ppm下,其靈敏度為2187%,反應時間為20秒及回復時間為40秒; 但在相同條件下,已發表的Ti/BaTiO3-CuO-Ag(1%)/P-Si/Pt 的感測器,靈敏度、反應時間及回復時間才分別為70%,1.5min及2min。很明顯吾人發展者特性有明顯的提升。

    In this thesis, we developed the tandem heterojunctions with 3D nano structures for CO2 gas sensing applications. The tandem type sensing element effectively increases the sensing ability. For example, in a planar type sensor, under the condition of 150 oC, -3V, and 3000 ppm CO2 ambient, the sensor sensitivity can be promoted from 554% to 796% and 812% , respectively for the 2D structure , Ag connected tandem heterojunction sensing element, and 3D nano rod device but with single heterojunction sensing element. Furthermore, if both of the tandem sensing element and 3D nano-structures are employed, the sensitivity improvement can even increase up to 2187%. Besides, the improvement in the sensitivity also leads the reduction of response time from few minutes of the conventional resistive type to tenths seconds.

    中文摘要 I 英文延伸摘要 IV 第一章 導論 1 1-1 前言 1 1-2 氣體感測器 1 1-3 二氧化碳(CO2)氣體特性 2 1-4 高介電係數(High K)絕緣薄膜之特性及應用 3 1-5 3D奈米結構簡介 4 1-6 金屬氧化物(SnO2、CuO)的特性 5 1-7 論文架構 6 第二章 理論基礎 7 2-1 元件基礎理論 7 2-2 感測器工作原理 9 2-3 蝕刻奈米柱狀結構之機制及原理 10 2-4 濺鍍理論 12 2-4-1 濺設現象 12 2-4-2 輝光放電 13 2-4-3 沉積現象 14 第三章 實驗與量測儀器及製程步驟 16 3-1 成長系統 16 3-1-1 射頻磁控濺鍍系統(Radio-Frequency Sputtering System) 16 3-1-2 真空熱蒸著系統(Thermal Vacuum Evaporation System) 20 3-2 薄膜分析量測儀器 21 3-2-1 掃描式電子顯微鏡(FE-SEM) 21 3-2-2 原子力顯微鏡(Atomic Force Micriscope, AFM) 21 3-2-3 α-step 膜厚量測儀 22 3-2-4 氣體感測量測系統 22 3-2-5 HP4145B半導體參數分析儀 22 3-3 製程步驟與成長參數 23 3-3-1 矽基板清洗流程 23 3-3-2 奈米柱狀結構蝕刻流程 24 3-3-3 使用濺鍍系統成長金屬氧化層 24 3-3-4 使用濺鍍系統成長本質絕緣層與感測層 25 3-3-5 使用熱蒸著系統成長電極 25 3-3-6 量測實驗 25 第四章 結果與討論 27 4-1 奈米柱狀結構分析 27 4-2 元件製作與特性量測 29 4-2-1 本質絕緣層材料對感測元件之影響 29 4-2-2 堆疊式結構使用金屬銀、銅(Ag、Cu)連接對感測元件之影響 31 4-3 奈米結構感測元件分析 33 4-3-1 3D奈米結構對感測元件之影響 34 4-3-2 探討堆疊式結構與單層3D奈米柱狀結構之影響 35 4-3-3 探討同時使用3D奈米柱狀結構與堆疊式結構之影響 37 4-3-4 不同結構之綜合比較 37 4-4 針對堆疊式3D奈米柱狀結構作氣體選擇比 39 第五章 結論與未來展望 40 5-1 結論 40 5-2 未來展望 41 ※參考文獻 42 ※附表 48 ※附圖 58

    [1] “減少二氧化碳排放由日常生活著手”,行政院國家科學委員會.
    [2] 蔡嬪嬪,曾明漢,“氣體感測器之簡介、應用及市場”,材料與社會,第68期 1992.
    [3] 蔡嬪嬪,曾明漢,“氣體感測器之簡介、應用及市場”, 材料與社會,第150期1999.
    [4] 勞工安全衛生研究所。2010/03/29
    [5] Eric Bersch, Sylvie Rangan, Robert Allen Bartynski, Eric Garfunkel,
    and Elio Vescovo,“ Band offsets of ultrathin high-κ oxide films with Si’’ Phys. Rev. B 78, 085114.
    [6] "Alumina(AluminiumOxide) – The Different Types of Commercially Available Grades". Archived from the original on 10 October 2007.
    [7] Ghahremaninezhad.A, Asselin.E, “Electrodeposition and Growth Mechanism of Copper Sulfide Nanowires” Journal of Physical Chemistry C, vol.115, pp.9320-9334, 2011.
    [8] Li LS, Walda J, Manna L, Alivisatos AP. “Semiconductor nanorod liquid crystals” Nano Letters, vol 6, pp.557-560, 2002.
    [9] Peng KQ, Zhu J, “Simultaneous gold deposition and formation of silicon nanowire arrays” Journal of Electroanalytical Chemistry, vol 558, pp.35-39, 2003
    [10] Peng KQ, Xu Y, Wu Y, Yan YJ, Lee ST, Zhu J, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications” Small, vol 1, pp.1062-1067, 2005.
    [11] Peng KQ, Hu JJ, Yan YJ, Wu Y, Fang H, Xu Y, Lee ST, Zhu J, “Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles”, Advanced Functional Materials, vol 16, pp.387-394, 2006
    [12] Peng KQ, Yan YJ, Gao SP, Zhu J,“Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry” Advanced Materials, vol 14, pp.1164-1167, 2002.
    [13] Peng KQ, Yan YJ, Gao SP, Zhu J, “Dendrite-assisted growth of silicon nanowires in electroless metal deposition” Advanced Functional Materials, vol 13, pp.127-132, 2003.
    [14] Qiu T, Wu XL, Yang X, Huang GS, Zhang ZY, “Self-assembled growth and optical emission of silver-capped silicon nanowires” Applied Physics Letters, vol 84, pp.3867-3869, 2004
    [15] Ulnch Hoefer, Gerd Kuhner, Werner Schweizer, Gerd Sulz, Klaus Steiner, " CO and CO2 thin-film SnO2, gas sensors on Si substrates", Sensors and Actuators B 22 (1994).
    [16] Gemma Garcia Mandayo, Jaime Herran, Irene Castro-Hurtado, Enrique Castano, "Performance of a CO2 Impedimetric Sensor Prototype for Air Quality Monitoring", Sensors 2011.
    [17] 陳銘峰,“熱氧化退火法製備氧化銅半導體奈米線及其性質之研究”,國立中央大學化學工程與材料工程研究所碩士論文,2009.
    [18] Rideout VL"A Review Of Theory, Technology And Applications Of Metal-Semiconductor Rectifiers" Thin Solid Films, vol 48, 1978.
    [19] S. M. Sze, "Physics of semiconductor devices"ch5, wiley, New York, 1980.
    [20] Neamen, "Semiconductor physics and device"ch9, p336, McGraw-Hill, 1992.
    [21] Wen-I Hsu, Shui-Jinn Wang, “Fabrication and Characterization of Single-Crystalline Silicon Nanowires Prepared by Metal-Induced Etching,” National Cheng Kung University, 2008.
    [22] 賴耿陽,“IC 製程之濺射技術”,復漢出版社 1997年。
    [23] 王福貞,聞立時,“表面沉積技術”,機械工業出版社,pp.114-204。
    [24] 莊達人,”VLSI製造技術”,高立圖書股份有限公司,1995年。
    [25] F. Shinoki and A. Itoh, “Mechanism of rf reactive sputtering, ” Journal of Applied Physical., vol. 46, p. 3381, 1975.
    [26] Wen-I Hsu, Shui-Jinn Wang, “Fabrication and Characterization of Single-Crystalline Silicon Nanowires Prepared by Metal-Induced Etching , ” National Cheng Kung University, 2008.
    [27] Jaime Herran, Gemma Garcia Mandayo, Enrique Castano, "Physical behaviour of BaTiO3–CuO thin-film under carbon dioxide atmospheres", Sensors and Actuators B 127 (2007).
    [28] J. Robertson, ” High dielectric constant oxides”, Eur. Phys. J. Appl. Phys. 28, 265–291 (2004).
    [29] Bedair Sm, Mcdermott Bt, Reid Kg, Neudeck Pg, Cooper Ja, Melloch Mr “Extremely Low-Leakage GaAs P-I-N Junctions And Memory Capacitors Grown By Atomic Layer Epitaxy,” IEEE Electron Device Letters, vol.11, pp.261-263, 1990.
    [30] P.W. Atkins, “Physical Chemistry Fifth edition,” Oxford, pp877-p878, 1994.
    [31] J. Robertson, ” High dielectric constant oxides,” Eur. Phys. J. Appl. Phys. 28, 265–291 (2004).
    [32] 劉錦淮,張鑒,余增亮,“銀摻染的半導體氧化物二氧化碳感測器研究”中國科學院合肥智能機械研究所 1007-4252(2003)04-0457-04.
    [33] Tatsumi Ishihara, Kazuhiro Kometani, Yuichiro Nishi, Yusaku Takita, “Improved sensitivity of CuO-BaTiO3 capacitive-type CO2 sensor by additives,” Sensors and Actuators B, vol. 28, pp. 49-54, 1995.
    [34] S.B.Rudraswamy, Palash Kumar Basu, Navakanta Bhat, “Sensitivity characteristics of Ag doped BaTiO3-CuO,” Electronics, Computing and Communication Technologies, Page(s): 1 – 4, 2014.
    [35] Zheng Jiao, Feng Chen, Run Su,, Xingjiu Huang, Wei Liu and Jinhuai Liu, “Study on the Characteristics of Ag Doped CuO-BaTiO3 CO2 Sensors,” Sensors, vol. 2, pp. 366-373, 2002.
    [36] 吳泉毅、楊宗燁、林鴻明,“奈米半導體材料之氣體感測性質”。
    [37] Zheng Jiao, Feng Chen, Run Su,, Xingjiu Huang, Wei Liu and Jinhuai Liu, “Study on the Characteristics of Ag Doped CuO-BaTiO3 CO2 Sensors,” Sensors, vol. 2, pp. 366-373, 2002.
    [38] Windischmann H, Mark P, “A model for the operation of a thin film SnOx conductance-modulation carbon monoxide sensor,” Journal Of The Electrochemical Society, vol. 126, pp. 627-633, 1979.
    [39] 粘駿楠、鄧熙聖,“銅氧化物結構對其催化和光電化學反應性之影響",國立成功大學,中華民國九十五年。
    [40] Nathaniel J. Quitoriano, Miro Belov, Stephane Evoy, and Theodore I. Kamins, “Single-Crystal, Si Nanotubes, and Their Mechanical Resonant Properties,” Nano Letter, 2009.
    [41] Keat G. Ong and Craig A. Grimes, “A Carbon Nanotube-based Sensor for CO2 Monitoring,” Sensors, vol. 1, pp. 193-205, 2001.
    [42] 鄭紹良、陳銘鋒,“熱氧化退火法製備氧化銅半導體奈米線及其性質之研究”,國立中央大學,中華民國九十八年。
    [43] Herran, San Sebastian, Mandayo, G.G., Castano, “Solid State Gas Sensor for Fast Carbon Dioxide Detection,” Solid-State Sensors, Actuators and Microsystems Conference, Page(s):979 – 982, 2007.
    [44] Xu, J.C., Hunter, G.W., Lukco, Chung-Chiun Liu, “Novel Carbon Dioxide Microsensor Based on Tin Oxide Nanomaterial Doped With Copper Oxide,” Sensors Journal, IEEE (Volume:9, Issue:3 ), Page(s): 235 – 236, 2008.

    無法下載圖示 校內:2016-08-05公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE