簡易檢索 / 詳目顯示

研究生: 林殷如
Lin, Yin-Ju
論文名稱: 尋找融合基因的新方法評估-以MLL為例
The evaluation of a new method for detecting fusion genes, using MLL gene rearrangement as an example
指導教授: 何中良
Ho, Chung-Liang
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 126
中文關鍵詞: 轉位基因融合基因混合系白血病基因快速放大cDNA末端法基因表現連續分析法擴增後轉錄產物連續分析法
外文關鍵詞: chromosomal translocation, fusion gnene, MLL, RACE, SAGE, SAAT
相關次數: 點閱:122下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因染色體轉位而產生的融合基因,是癌症基因體中最常出現的體變異形式,其中令人存疑的現象是,多於80%的融合基因是從癌症發生率只佔10%的血癌、淋巴癌、骨癌及軟組織肉瘤中發現;而佔癌症死亡率80%的上皮癌中卻只發現大約10%的融合基因。這樣的現象不禁讓人懷疑,是否有更多未知的融合基因存在於上皮癌中。另外,至今已經證實許多針對有酵素活性且會參與癌症發生的融合基因的抗癌藥物,可以有效的治療帶有這些融合基因的病患,更突顯了融合基因在癌症治療的重要性。因此這個研究的主要目的便為:建立一個高通量的檢驗方法,以適用於尋找上皮癌中潛藏的可用藥物治療的融合基因。
    快速放大cDNA末端法(rapid amplification of cDNA ends, RACE)是一個常用於尋找融合基因的技術,不過它可能會因為細胞中fusion/wild-type transcript ratio比例很低,而必需進行大量DNA定序。因此我們在RACE之後接續進行基因表現連續分析法(serial analysis of gene expression, SAGE)以提高檢驗的通量,經由SAGE將DNA序列濃縮為可代表基因特性的短tag鏈後,可以將DNA定序的效率提高到20~30倍以上。我們這個將RACE和SAGE結合的檢測方法定名為:擴增後轉錄產物連續分析法(serial analysis of amplified transcripts, SAAT)。
    為了建立以及評估SAAT的運作,我們利用一個已知有多達64種translocation partner genes的MLL (Mixed Lineage Leukaemia) 基因為模型。在這個研究中我們藉著MLL完善的基礎研究成功的建立了一個對MLL基因有專一性的3’-RACE,並接續著利用一株帶有MLL轉位基因的細胞株(MV 4-11)來評估SAAT的準確性及靈敏度。將來我們將匯集許多上皮癌病患的檢體,希望藉著單一次SAAT的進行便對全部的檢體進行偵測,以研究其中是否有潛藏的可用藥物治療的融合基因。

    Fusion genes, resulting from chromosome translocations, are the most prevalent form of somatic changes in the cancer genome. Intriguingly, >80% of all known fusion genes are attributed to leukemias, lymphomas, but bone and soft tissue sarcomas that account for only 10% of all human cancers. In contrast, common epithelial cancers, which account for 80% of cancer-related deaths, can only be attributed to 10% of known recurrent fusion genes. Furthermore, if translocation-mediated fusion genes encode activated enzymes with direct oncogenic potential, targeting such enzymes could provide a feasible approach to treat individuals harboring the corresponding fusion genes. Therefore, a high-throughput method is needed not only for differential diagnosis but also for discovering drugable fusion genes in solid tumors.
    RACE (rapid amplification of cDNA ends) is a widely used technique for finding fusion genes but its chief defect is the demand of a great deal of sequecing which may result from low fusion/wild-type transcript ratios. We propose to use SAGE (serial analysis of gene expression) after RACE to increase the throughput. When sequencing same amount of clones, SAGE can give 20 to 30 times more information than RACE alone. Therefore, it would be possible to pool the cases into groups and screened at once. This strategy is designated SAAT (serial analysis of amplified transcripts).
    In order to assess the performance of SAAT we use MLL (Mixed Lineage Leukaemia) translocations as an example. MLL translocations occur in up to 70% of infant Acute lymphoblastic leukemia (ALL), and in about 3% of acute myeloid leukemia (AML), and it is already known can be recombined with 64 different partner genes, posing a challenge for routine molecular diagnosis.
    In this research we based on the intergraty of the basic reaserch of MLL gene, sucessfully established a RACE system specific to MLL gene.Then we mixed normal leukocyte and MV4-11 that have MLL-AF4 translocation at different ratio to test the correctness and the detection efficiency of SAAT.In the future, we well use SAAT to screen a pool of samples from carcinoma patients at a time, for the purpose of discovering drugable fusion genes in solid tumors.

    致謝 3 中文摘要 9 ABSTRACT 10 第一章 序論 11 I.人類癌症中的融合基因 (FUSION GENES IN HUMAN CANCERS) 11 A.血液腫瘤中的融合基因(Fusion Genes in Heamatologic Cancers) 12 B.肉瘤中的融合基因(Fusion Genes in Sarcoma Cancers) 13 C.上皮癌中的融合基因(Fusion Genes in Carcinoma) 14 II.以MLL基因轉位為技術開發模型(CHOOSING MLL GENE TRANSLOCATION AS A SYSTEM MODEL) 16 A.MLL基因和它的功能 (MLL gene and its function) 16 B.MLL融合基因 (MLL fusion genes) 18 C.台灣地區MLL轉位基因的研究報告 18 III.研究染色體轉位的技術 (THE METHODS FOR INVESTIGATING FUSION GENES) 20 A.細胞遺傳技術(Cytogenetic technique) 20 B.南方墨點法 (Southern Blot Analysis) 22 C.聚合酶連鎖反應相關技術 (Polymerase Chain Reaction (PCR)-related technique) 22 D.微陣列晶片分析法 (Microarray analysis) 33 IV.高通量的DNA定序方法(HIGH-THROUGHPUT METHODS TO DO DNA SEQUENCING) 34 A.以Tag為基礎的方法 (Tag-based methods) 34 B.大規模平行定序 (Massively Parallel Sequencing, MPS) 38 第二章 實驗材料與方法 42 I.直體構築(PLASMID CONSTRUCTIONS) 42 A.細胞株Total RNA的萃取 (Isolation of Total RNA from cell lines) 42 B.利用反轉錄酵素產生frist-strand cDNA (Using Reverse Transcriptase to Synthesize frist-strand cDNA) 42 C.聚合酶連鎖反應 (Polymerase Chain Reaction,PCR) 43 D.自Agarose Gel中萃取DNA (DNA Extraction from Agarose Gel) 44 E.DNA酒精沉澱法 (DNA Precipitation with Ethanol) 45 F.TA Cloning 46 G.勝任細胞轉型實驗 (Transformation of Competent Cells) 46 H.勝任細胞的製備(Preparation of Competent Cells) 47 I.微量萃取質體DNA (Mini-preparation of Plasmid DNA) 48 J.DNA 定序 (DNA Sequencing) 49 K.菌株的保存 (Storage of Bacterial Cultures) 49 L.兩條寡核苷酸的互補黏合 (Annealing of Two Oligonucleotides) 49 M.DNA 末端的磷酸化與去磷酸化(Phosphorylation and De-phosphorylation of DNA Ends) 50 N.更改限制酵素切位 (Modification of Restriction Enzyme Cutting Sites) 51 O.質體的序列稀釋 (Serial Dilution of plasmids) 51 II.快速放大CDNA末端法(RAPID AMPLIFICATION OF CDNA ENDS,RACE) 52 A.血液total RNA的萃取(Preparation of Total RNA from blood) 52 B.利用反轉錄酵素產生第一股cDNA (Using Reverse Transcriptase to Synthesis Frist-strand cDNA) 52 C.First-strand cDNA品質的檢查(Examination the Quality of First-strand cDNA) 53 D.設計特定基因的RACE primer (Design of Gene specific primers for RACE) 54 E.快速放大cDNA 3’-末端法的第一次PCR (3’-RACE first round PCR) 54 F.第二次PCR (Nested PCR) 55 III.基因表現連續分析法 (SERIAL ANALYSIS OF GENE EXPRESSION, SAGE) 57 A.將DNA附著上磁珠 (Binding DNA to Magnetic Beads) 57 B.利用限制酵素Nla III切割DNA (Digesting the DNA with Nla III) 57 C.將LS Adapter 連接上DNA (Ligating LS Adapters to the DNA) 57 D.利用限制酵素Mme I切割DNA (Cleaving the DNA with Mme I) 58 E.Ditags的產生 (Creation of Ditags) 60 F.Ditags PCR的最佳化 (Optimizing the Ditags PCR) 60 G.分析PCR的產物 (Analyzing the PCR Product) 61 H.執行大規模的PCR (Performing Scale-up PCR) 61 I.離析130-bp的ditags (Isolating the 130-bp Ditags) 62 J.利用限制酵素Nla Ⅲ 切割130-bp的ditags (Digesting the 130-bp Ditags with Nla Ⅲ) 63 K.離析34-bp的ditags (Isolating the 34-bp Ditags) 63 L.接合34-bp的ditags 使產生concatemers (Ligating the 34-bp Ditag to Yield Concatemers) 64 M.利用Sph I 將pUC18線性化 (Linearizing pUC18 with Sph I) 64 N.將concatemers 接合進pUC18 和E. coli 的轉型實驗 (Cloning concatemers into pUC18 and transforming E. coli) 65 O.利用colony PCR 分析轉化菌株 (Analyzing Transformants by Colony PCR) 66 P.定序 (Sequencing) 67 Q.分析定序資料 (Analyzing Sequencing Data) 67 第三章 結果 68 I.MLL 3’-RACE SYSTEM 的建立 68 A.MLL 3’-RACE primer的設計和篩選 68 B.Primer working condition的調整 68 C.將adapters連接到first-strand cDNA的5’-端 69 D.測試 MLL 3’-RACE system 70 E.MLL 3’-RACE 產物專一性確認 71 II.SAGE SYSTEM 的建立 71 A.Positive control system的設計 71 B.SAGE working condition的調整 72 C.SAGE ditags的擴增和純化 73 D.SAGE 36 bp ditags 的純化 74 E.SAGE tag library 的建立和評估 74 III.提升 SAGE CONCATEMER LIBRARY的品質 75 IV.正常人體白血球及MV 4-11 SAAT TAG LIBRARY的結果 76 第四章 討論 78 I.約有25% 的TAG和其對應的基因比對結果相似度低於90% 78 II.SAAT TAG LIBRARY 中背景序列的出現 78 III. AF4序列在MV 4-11 SAAT TAG LIBRARY中出現的機率太低 78 第五章 參考文獻 80 第六章 圖 93 第七章 表 117 第八章 附錄 120 作者自述 126

    [1]M. Nambiar, V. Kari, S.C. Raghavan, Chromosomal translocations in cancer. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 1786 (2008) 139-152.
    [2]F. Mitelman, B. Johansson, F. Mertens, The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer 7 (2007) 233-245.
    [3]T.H. Rabbitts, Chromosomal translocations in human cancer. Nature 372 (2002) 143-149.
    [4]C.T. Rudkin, D.A. Hungerford, P.C. Nowell, DNA Contents of Chromosome Ph1 and Chromosome 21 in Human Chronic Granulocytic Leukemia. Science 144 (1964) 1229-1231.
    [5]J.D. Rowley, Letter: A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243 (1973) 290-293.
    [6]E. Shtivelman, B. Lifshitz, R.P. Gale, E. Canaani, Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature 315 (1985) 550-554.
    [7]B.J. Druker, C.L. Sawyers, H. Kantarjian, D.J. Resta, S.F. Reese, J.M. Ford, R. Capdeville, M. Talpaz, Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344 (2001) 1038-1042.
    [8]P.A. Futreal, L. Coin, M. Marshall, T. Down, T. Hubbard, R. Wooster, N. Rahman, M.R. Stratton, A census of human cancer genes. Nat Rev Cancer 4 (2004) 177-183.
    [9]F. Mitelman, B. Johansson, F.M. Mertens, Mitelman Database of chromosome Aberrations in Cancer [online], in, 2006.
    [10]M.R. Teixeira, Recurrent fusion oncogenes in carcinomas. Crit Rev Oncog 12 (2006) 257-271.
    [11]E.A. Copelan, E.A. McGuire, The biology and treatment of acute lymphoblastic leukemia in adults. Blood 85 (1995) 1151-1168.
    [12]A. Biondi, A. Rambaldi, Molecular diagnosis and monitoring of acute myeloid leukemia. Leuk Res 20 (1996) 801-807.
    [13]C.H. Pui, W.E. Evans, Acute lymphoblastic leukemia. N Engl J Med 339 (1998) 605-615.
    [14]S.H. Swerdlow, Campo, E., Harris, N.L., Jaffe, E.S., Pileri, S.A., Stein, H., Thiele, J., Vardiman, J.W, WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, Fourth Edition, IARC, Lyon, 2008
    [15]J. Borrow, A.D. Goddard, B. Gibbons, F. Katz, D. Swirsky, T. Fioretos, I. Dube, D.A. Winfield, J. Kingston, A. Hagemeijer, et al., Diagnosis of acute promyelocytic leukaemia by RT-PCR: detection of PML-RARA and RARA-PML fusion transcripts. Br J Haematol 82 (1992) 529-540.
    [16]U. Bacher, W. Kern, S. Schnittger, W. Hiddemann, T. Haferlach, C. Schoch, Population-based age-specific incidences of cytogenetic subgroups of acute myeloid leukemia. Haematologica 90 (2005) 1502-1510.
    [17]R.N. Sanderson, P.R. Johnson, A.V. Moorman, E. Roman, E. Willett, P.R. Taylor, S.J. Proctor, N. Bown, S. Ogston, D.T. Bowen, Population-based demographic study of karyotypes in 1709 patients with adult acute myeloid leukemia. Leukemia 20 (2006) 444-450.
    [18]F. Mertens, C.R. Antonescu, P. Hohenberger, M. Ladanyi, P. Modena, M. D'Incalci, P.G. Casali, M. Aglietta, T. Alvegard, Translocation-related sarcomas. Semin Oncol 36 (2009) 312-323.
    [19]I. Panagopoulos, F. Mertens, M. Isaksson, H.A. Domanski, O. Brosjo, S. Heim, B. Bjerkehagen, R. Sciot, P. Dal Cin, J.A. Fletcher, C.D. Fletcher, N. Mandahl, Molecular genetic characterization of the EWS/CHN and RBP56/CHN fusion genes in extraskeletal myxoid chondrosarcoma. Genes Chromosomes Cancer 35 (2002) 340-352.
    [20]M.A. Pierotti, M. Santoro, R.B. Jenkins, G. Sozzi, I. Bongarzone, M. Grieco, N. Monzini, M. Miozzo, M.A. Herrmann, A. Fusco, et al., Characterization of an inversion on the long arm of chromosome 10 juxtaposing D10S170 and RET and creating the oncogenic sequence RET/PTC. Proc Natl Acad Sci U S A 89 (1992) 1616-1620.
    [21]M.A. Pierotti, Chromosomal rearrangements in thyroid carcinomas: a recombination or death dilemma. Cancer Lett 166 (2001) 1-7.
    [22]J.D. Rowley, Chromosome translocations: dangerous liaisons revisited. Nat Rev Cancer 1 (2001) 245-250.
    [23]P.C. Nowell, Tumor progression: a brief historical perspective. Semin Cancer Biol 12 (2002) 261-266.
    [24]E. Rodriguez, C. Sreekantaiah, R.S. Chaganti, Genetic changes in epithelial solid neoplasia. Cancer Res 54 (1994) 3398-3406.
    [25]E.C. Collins, T.H. Rabbitts, The promiscuous MLL gene links chromosomal translocations to cellular differentiation and tumour tropism. Trends Mol Med 8 (2002) 436-442.
    [26]S. Stass, J. Mirro, S. Melvin, C.H. Pui, S.B. Murphy, D. Williams, Lineage switch in acute leukemia. Blood 64 (1984) 701-706.
    [27]J. Mirro, T.F. Zipf, C.H. Pui, G. Kitchingman, D. Williams, S. Melvin, S.B. Murphy, S. Stass, Acute mixed lineage leukemia: clinicopathologic correlations and prognostic significance. Blood 66 (1985) 1115-1123.
    [28]J. Mirro, G.R. Kitchingman, D.L. Williams, S.B. Murphy, T.F. Zipf, S.A. Stass, Mixed lineage leukemia: the implications for hematopoietic differentiation. Blood 68 (1986) 597-599.
    [29]S. Ziemin-van der Poel, N.R. McCabe, H.J. Gill, R. Espinosa, 3rd, Y. Patel, A. Harden, P. Rubinelli, S.D. Smith, M.M. LeBeau, J.D. Rowley, et al., Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc Natl Acad Sci U S A 88 (1991) 10735-10739.
    [30]S.A. Armstrong, A.T. Look, Molecular genetics of acute lymphoblastic leukemia. J Clin Oncol 23 (2005) 6306-6315.
    [31]C. Schoch, S. Schnittger, M. Klaus, W. Kern, W. Hiddemann, T. Haferlach, AML with 11q23/MLL abnormalities as defined by the WHO classification: incidence, partner chromosomes, FAB subtype, age distribution, and prognostic impact in an unselected series of 1897 cytogenetically analyzed AML cases. Blood 102 (2003) 2395-2402.
    [32]J.L. Huret, P. Dessen, A. Bernheim, An atlas of chromosomes in hematological malignancies. Example: 11q23 and MLL partners. Leukemia 15 (2001) 987-989.
    [33]I. Nilson, K. Lochner, G. Siegler, J. Greil, J.D. Beck, G.H. Fey, R. Marschalek, Exon/intron structure of the human ALL-1 (MLL) gene involved in translocations to chromosomal region 11q23 and acute leukaemias. Br J Haematol 93 (1996) 966-972.
    [34]J.J. Hsieh, E.H. Cheng, S.J. Korsmeyer, Taspase1: a threonine aspartase required for cleavage of MLL and proper HOX gene expression. Cell 115 (2003) 293-303.
    [35]N.J. Zeleznik-Le, A.M. Harden, J.D. Rowley, 11q23 translocations split the "AT-hook" cruciform DNA-binding region and the transcriptional repression domain from the activation domain of the mixed-lineage leukemia (MLL) gene. Proc Natl Acad Sci U S A 91 (1994) 10610-10614.
    [36]Y. Dou, T.A. Milne, A.J. Tackett, E.R. Smith, A. Fukuda, J. Wysocka, C.D. Allis, B.T. Chait, J.L. Hess, R.G. Roeder, Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 121 (2005) 873-885.
    [37]Y. Dou, T.A. Milne, A.J. Ruthenburg, S. Lee, J.W. Lee, G.L. Verdine, C.D. Allis, R.G. Roeder, Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat Struct Mol Biol 13 (2006) 713-719.
    [38]J.L. Hess, B.D. Yu, B. Li, R. Hanson, S.J. Korsmeyer, Defects in yolk sac hematopoiesis in Mll-null embryos. Blood 90 (1997) 1799-1806.
    [39]C. Meyer, E. Kowarz, J. Hofmann, A. Renneville, J. Zuna, J. Trka, R. Ben Abdelali, E. Macintyre, E. De Braekeleer, M. De Braekeleer, E. Delabesse, M.P. de Oliveira, H. Cave, E. Clappier, J.J. van Dongen, B.V. Balgobind, M.M. van den Heuvel-Eibrink, H.B. Beverloo, R. Panzer-Grumayer, A. Teigler-Schlegel, J. Harbott, E. Kjeldsen, S. Schnittger, U. Koehl, B. Gruhn, O. Heidenreich, L.C. Chan, S.F. Yip, M. Krzywinski, C. Eckert, A. Moricke, M. Schrappe, C.N. Alonso, B.W. Schafer, J. Krauter, D.A. Lee, U. Zur Stadt, G. Te Kronnie, R. Sutton, S. Izraeli, L. Trakhtenbrot, L. Lo Nigro, G. Tsaur, L. Fechina, T. Szczepanski, S. Strehl, D. Ilencikova, M. Molkentin, T. Burmeister, T. Dingermann, T. Klingebiel, R. Marschalek, New insights to the MLL recombinome of acute leukemias. Leukemia 23 (2009) 1490-1499.
    [40]C.A. Felix, M.R. Hosler, D.J. Slater, R.I. Parker, M. Masterson, J.A. Whitlock, T.R. Rebbeck, P.C. Nowell, B.J. Lange, MLL genomic breakpoint distribution within the breakpoint cluster region in de novo leukemia in children. J Pediatr Hematol Oncol 20 (1998) 299-308.
    [41]A. Daser, T.H. Rabbitts, The versatile mixed lineage leukaemia gene MLL and its many associations in leukaemogenesis. Semin Cancer Biol 15 (2005) 175-188.
    [42]A.V. Krivtsov, S.A. Armstrong, MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 7 (2007) 823-833.
    [43]S.A. Armstrong, J.E. Staunton, L.B. Silverman, R. Pieters, M.L. den Boer, M.D. Minden, S.E. Sallan, E.S. Lander, T.R. Golub, S.J. Korsmeyer, MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 30 (2002) 41-47.
    [44]E.-J. Yeoh, M.E. Ross, S.A. Shurtleff, W.K. Williams, D. Patel, R. Mahfouz, F.G. Behm, S.C. Raimondi, M.V. Relling, A. Patel, C. Cheng, D. Campana, D. Wilkins, X. Zhou, J. Li, H. Liu, C.-H. Pui, W.E. Evans, C. Naeve, L. Wong, J.R. Downing, Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1 (2002) 133-143.
    [45]J.F. Dimartino, M.L. Cleary, Mll rearrangements in haematological malignancies: lessons from clinical and biological studies. Br J Haematol 106 (1999) 614-626.
    [46]M.H. Dreyling, K. Schrader, C. Fonatsch, B. Schlegelberger, D. Haase, C. Schoch, W. Ludwig, H. Loffler, T. Buchner, B. Wormann, W. Hiddemann, S.K. Bohlander, MLL and CALM are fused to AF10 in morphologically distinct subsets of acute leukemia with translocation t(10;11): both rearrangements are associated with a poor prognosis. Blood 91 (1998) 4662-4667.
    [47]J.E. Rubnitz, S.C. Raimondi, X. Tong, D.K. Srivastava, B.I. Razzouk, S.A. Shurtleff, J.R. Downing, C.H. Pui, R.C. Ribeiro, F.G. Behm, Favorable impact of the t(9;11) in childhood acute myeloid leukemia. J Clin Oncol 20 (2002) 2302-2309.
    [48]I. Moreno, G. Martin, P. Bolufer, E. Barragan, E. Rueda, J. Roman, P. Fernandez, P. Leon, A. Mena, J. Cervera, A. Torres, M.A. Sanz, Incidence and prognostic value of FLT3 internal tandem duplication and D835 mutations in acute myeloid leukemia. Haematologica 88 (2003) 19-24.
    [49]L.Y. Shih, D.C. Liang, J.F. Fu, J.H. Wu, P.N. Wang, T.L. Lin, P. Dunn, M.C. Kuo, T.C. Tang, T.H. Lin, C.L. Lai, Characterization of fusion partner genes in 114 patients with de novo acute myeloid leukemia and MLL rearrangement. Leukemia 20 (2006) 218-223.
    [50]D. Grimwade, The pathogenesis of acute promyelocytic leukaemia: evaluation of the role of molecular diagnosis and monitoring in the management of the disease. Br J Haematol 106 (1999) 591-613.
    [51]M.E. Huang, Y.C. Ye, S.R. Chen, J.R. Chai, J.X. Lu, L. Zhoa, L.J. Gu, Z.Y. Wang, Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 72 (1988) 567-572.
    [52]J.W. Gray, C. Collins, Genome changes and gene expression in human solid tumors. Carcinogenesis 21 (2000) 443-452.
    [53]T. Akasaka, T. Balasas, L.J. Russell, K.J. Sugimoto, A. Majid, R. Walewska, E.L. Karran, D.G. Brown, K. Cain, L. Harder, S. Gesk, J.I. Martin-Subero, M.G. Atherton, M. Bruggemann, M.J. Calasanz, T. Davies, O.A. Haas, A. Hagemeijer, H. Kempski, M. Lessard, D.M. Lillington, S. Moore, F. Nguyen-Khac, I. Radford-Weiss, C. Schoch, S. Struski, P. Talley, M.J. Welham, H. Worley, J.C. Strefford, C.J. Harrison, R. Siebert, M.J. Dyer, Five members of the CEBP transcription factor family are targeted by recurrent IGH translocations in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Blood 109 (2007) 3451-3461.
    [54]T. Sonoki, T.G. Willis, D.G. Oscier, E.L. Karran, R. Siebert, M.J. Dyer, Rapid amplification of immunoglobulin heavy chain switch (IGHS) translocation breakpoints using long-distance inverse PCR. Leukemia 18 (2004) 2026-2031.
    [55]T.G. Willis, D.M. Jadayel, L.J. Coignet, M. Abdul-Rauf, J.G. Treleaven, D. Catovsky, M.J. Dyer, Rapid molecular cloning of rearrangements of the IGHJ locus using long-distance inverse polymerase chain reaction. Blood 90 (1997) 2456-2464.
    [56]J.J. van Dongen, E.A. Macintyre, J.A. Gabert, E. Delabesse, V. Rossi, G. Saglio, E. Gottardi, A. Rambaldi, G. Dotti, F. Griesinger, A. Parreira, P. Gameiro, M.G. Diaz, M. Malec, A.W. Langerak, J.F. San Miguel, A. Biondi, Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia 13 (1999) 1901-1928.
    [57]K. Zimmermann, J.W. Mannhalter, Technical aspects of quantitative competitive PCR. Biotechniques 21 (1996) 268-272, 274-269.
    [58]T. Lion, T. Henn, A. Gaiger, P. Kalhs, H. Gadner, Early detection of relapse after bone marrow transplantation in patients with chronic myelogenous leukaemia. Lancet 341 (1993) 275-276.
    [59]A. Hochhaus, A. Reiter, S. Saussele, A. Reichert, M. Emig, J. Kaeda, B. Schultheis, U. Berger, P.C. Shepherd, N.C. Allan, R. Hehlmann, J.M. Goldman, N.C. Cross, Molecular heterogeneity in complete cytogenetic responders after interferon-alpha therapy for chronic myelogenous leukemia: low levels of minimal residual disease are associated with continuing remission. German CML Study Group and the UK MRC CML Study Group. Blood 95 (2000) 62-66.
    [60]K. Laczika, M. Novak, B. Hilgarth, M. Mitterbauer, G. Mitterbauer, A. Scheidel-Petrovic, C. Scholten, R. Thalhammer-Scherrer, S. Brugger, F. Keil, I. Schwarzinger, O.A. Haas, K. Lechner, U. Jaeger, Competitive CBFbeta/MYH11 reverse-transcriptase polymerase chain reaction for quantitative assessment of minimal residual disease during postremission therapy in acute myeloid leukemia with inversion(16): a pilot study. J Clin Oncol 16 (1998) 1519-1525.
    [61]K. Tobal, J.A. Liu Yin, Molecular monitoring of minimal residual disease in acute myeloblastic leukemia with t(8;21) by RT-PCR. Leuk Lymphoma 31 (1998) 115-120.
    [62]J. Gabert, E. Beillard, V.H. van der Velden, W. Bi, D. Grimwade, N. Pallisgaard, G. Barbany, G. Cazzaniga, J.M. Cayuela, H. Cave, F. Pane, J.L. Aerts, D. De Micheli, X. Thirion, V. Pradel, M. Gonzalez, S. Viehmann, M. Malec, G. Saglio, J.J. van Dongen, Standardization and quality control studies of 'real-time' quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia - a Europe Against Cancer program. Leukemia 17 (2003) 2318-2357.
    [63]P.H. Domer, D.R. Head, N. Renganathan, S.C. Raimondi, E. Yang, M. Atlas, Molecular analysis of 13 cases of MLL/11q23 secondary acute leukemia and identification of topoisomerase II consensus-binding sequences near the chromosomal breakpoint of a secondary leukemia with the t(4;11). Leukemia 9 (1995) 1305-1312.
    [64]Y. Gu, G. Cimino, H. Alder, T. Nakamura, R. Prasad, O. Canaani, D.T. Moir, C. Jones, P.C. Nowell, C.M. Croce, et al., The (4;11)(q21;q23) chromosome translocations in acute leukemias involve the VDJ recombinase. Proc Natl Acad Sci U S A 89 (1992) 10464-10468.
    [65]M. Negrini, C.A. Felix, C. Martin, B.J. Lange, T. Nakamura, E. Canaani, C.M. Croce, Potential topoisomerase II DNA-binding sites at the breakpoints of a t(9;11) chromosome translocation in acute myeloid leukemia. Cancer Res 53 (1993) 4489-4492.
    [66]H. Ochman, A.S. Gerber, D.L. Hartl, Genetic applications of an inverse polymerase chain reaction. Genetics 120 (1988) 621-623.
    [67]C. Meyer, B. Schneider, M. Reichel, S. Angermueller, S. Strehl, S. Schnittger, C. Schoch, M.W. Jansen, J.J. van Dongen, R. Pieters, O.A. Haas, T. Dingermann, T. Klingebiel, R. Marschalek, Diagnostic tool for the identification of MLL rearrangements including unknown partner genes. Proc Natl Acad Sci U S A 102 (2005) 449-454.
    [68]S. Barjesteh van Waalwijk van Doorn-Khosrovani, K. Vanhees, E. Ruijters, F.J. van Schooten, Etoposide-initiated MLL rearrangements: the pitfalls of inverse PCR. Eur J Haematol 81 (2008) 486-488.
    [69]S.G. Lee, T.S. Park, S.C. Won, J. Song, K.A. Lee, J.R. Choi, R. Marschalek, C. Meyer, Three-way translocation involving MLL, MLLT1, and a novel third partner, NRXN1, in a patient with acute lymphoblastic leukemia and t(2;19;11) (p12;p13.3;q23). Cancer Genet Cytogenet 197 (2010) 32-38.
    [70]K. Matsuda, E. Hidaka, F. Ishida, K. Yamauchi, H. Makishima, T. Ito, T. Suzuki, E. Imagawa, K. Sano, T. Katsuyama, H. Ota, A case of acute myelogenous leukemia with MLL-AF10 fusion caused by insertion of 5' MLL into 10p12, with concurrent 3' MLL deletion. Cancer Genet Cytogenet 171 (2006) 24-30.
    [71]I.R. Green, D.R. Sargan, Sequence of the cDNA encoding ovine tumor necrosis factor-alpha: problems with cloning by inverse PCR. Gene 109 (1991) 203-210.
    [72]S.A. Schichman, M.A. Caligiuri, M.P. Strout, S.L. Carter, Y. Gu, E. Canaani, C.D. Bloomfield, C.M. Croce, ALL-1 tandem duplication in acute myeloid leukemia with a normal karyotype involves homologous recombination between Alu elements. Cancer Res 54 (1994) 4277-4280.
    [73]M.D. Megonigal, E.F. Rappaport, D.H. Jones, C.S. Kim, P.C. Nowell, B.J. Lange, C.A. Felix, Panhandle PCR strategy to amplify MLL genomic breakpoints in treatment-related leukemias. Proc Natl Acad Sci U S A 94 (1997) 11583-11588.
    [74]C.W. So, Z.G. Ma, C.M. Price, S. Dong, S.J. Chen, L.J. Gu, C.K. So, L.M. Wiedemann, L.C. Chan, MLL self fusion mediated by Alu repeat homologous recombination and prognosis of AML-M4/M5 subtypes. Cancer Res 57 (1997) 117-122.
    [75]C.W. Schmid, Alu: structure, origin, evolution, significance and function of one-tenth of human DNA. Prog Nucleic Acid Res Mol Biol 53 (1996) 283-319.
    [76]J. Riley, R. Butler, D. Ogilvie, R. Finniear, D. Jenner, S. Powell, R. Anand, J.C. Smith, A.F. Markham, A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clones. Nucleic Acids Res 18 (1990) 2887-2890.
    [77]R.S. Devon, D.J. Porteous, A.J. Brookes, Splinkerettes--improved vectorettes for greater efficiency in PCR walking. Nucleic Acids Res 23 (1995) 1644-1645.
    [78]E.F. Schoenmakers, R. Mols, S. Wanschura, P.F. Kools, J.M. Geurts, S. Bartnitzke, J. Bullerdiek, H. van den Berghe, W.J. Van de Ven, Identification, molecular cloning, and characterization of the chromosome 12 breakpoint cluster region of uterine leiomyomas. Genes Chromosomes Cancer 11 (1994) 106-118.
    [79]P.M. Groenen, E. Garcia, R. Thoelen, M. Aly, E.F. Schoenmakers, K. Devriendt, J.P. Fryns, W.J. Van de Ven, Isolation of cosmids corresponding to the chromosome breakpoints of a de novo autosomal translocation, t(6;19)(p21;q13.1), in a patient with multicystic renal dysplasia. Cytogenet Cell Genet 75 (1996) 210-215.
    [80]A. Borkhardt, A. Teigler-Schlegel, U. Fuchs, C. Keller, M. Konig, J. Harbott, O.A. Haas, An ins(X;11)(q24;q23) fuses the MLL and the Septin 6/KIAA0128 gene in an infant with AML-M2. Genes Chromosomes Cancer 32 (2001) 82-88.
    [81]J.F. Fu, J.J. Hsu, T.C. Tang, L.Y. Shih, Identification of CBL, a proto-oncogene at 11q23.3, as a novel MLL fusion partner in a patient with de novo acute myeloid leukemia. Genes Chromosomes Cancer 37 (2003) 214-219.
    [82]M.D. Megonigal, N.K. Cheung, E.F. Rappaport, P.C. Nowell, R.B. Wilson, D.H. Jones, K. Addya, D.G. Leonard, B.H. Kushner, T.M. Williams, B.J. Lange, C.A. Felix, Detection of leukemia-associated MLL-GAS7 translocation early during chemotherapy with DNA topoisomerase II inhibitors. Proc Natl Acad Sci U S A 97 (2000) 2814-2819.
    [83]M.D. Megonigal, E.F. Rappaport, D.H. Jones, T.M. Williams, B.D. Lovett, K.M. Kelly, P.H. Lerou, T. Moulton, M.L. Budarf, C.A. Felix, t(11;22)(q23;q11.2) In acute myeloid leukemia of infant twins fuses MLL with hCDCrel, a cell division cycle gene in the genomic region of deletion in DiGeorge and velocardiofacial syndromes. Proc Natl Acad Sci U S A 95 (1998) 6413-6418.
    [84]M.D. Megonigal, E.F. Rappaport, R.B. Wilson, D.H. Jones, J.A. Whitlock, J.A. Ortega, D.J. Slater, P.C. Nowell, C.A. Felix, Panhandle PCR for cDNA: a rapid method for isolation of MLL fusion transcripts involving unknown partner genes. Proc Natl Acad Sci U S A 97 (2000) 9597-9602.
    [85]L.D. Pegram, M.D. Megonigal, B.J. Lange, P.C. Nowell, J.D. Rowley, E.F. Rappaport, C.A. Felix, t(3;11) translocation in treatment-related acute myeloid leukemia fuses MLL with the GMPS (GUANOSINE 5' MONOPHOSPHATE SYNTHETASE) gene. Blood 96 (2000) 4360-4362.
    [86]L.J. Raffini, D.J. Slater, E.F. Rappaport, L. Lo Nigro, N.K. Cheung, J.A. Biegel, P.C. Nowell, B.J. Lange, C.A. Felix, Panhandle and reverse-panhandle PCR enable cloning of der(11) and der(other) genomic breakpoint junctions of MLL translocations and identify complex translocation of MLL, AF-4, and CDK6. Proc Natl Acad Sci U S A 99 (2002) 4568-4573.
    [87]D.J. Slater, E. Hilgenfeld, E.F. Rappaport, N. Shah, R.G. Meek, W.R. Williams, B.D. Lovett, N. Osheroff, R.S. Autar, T. Ried, C.A. Felix, MLL-SEPTIN6 fusion recurs in novel translocation of chromosomes 3, X, and 11 in infant acute myelomonocytic leukaemia and in t(X;11) in infant acute myeloid leukaemia, and MLL genomic breakpoint in complex MLL-SEPTIN6 rearrangement is a DNA topoisomerase II cleavage site. Oncogene 21 (2002) 4706-4714.
    [88]T. Taki, M. Akiyama, S. Saito, R. Ono, M. Taniwaki, Y. Kato, Y. Yuza, Y. Eto, Y. Hayashi, The MYO1F, unconventional myosin type 1F, gene is fused to MLL in infant acute monocytic leukemia with a complex translocation involving chromosomes 7, 11, 19 and 22. Oncogene 24 (2005) 5191-5197.
    [89]D.S. Wechsler, L.D. Engstrom, B.M. Alexander, D.G. Motto, D. Roulston, A novel chromosomal inversion at 11q23 in infant acute myeloid leukemia fuses MLL to CALM, a gene that encodes a clathrin assembly protein. Genes Chromosomes Cancer 36 (2003) 26-36.
    [90]D.H. Jones, S.C. Winistorfer, Sequence specific generation of a DNA panhandle permits PCR amplification of unknown flanking DNA. Nucleic Acids Res 20 (1992) 595-600.
    [91]N. Yonetani, C. Ueda, T. Akasaka, M. Nishikori, T. Uchiyama, H. Ohno, Heterogeneous breakpoints on the immunoglobulin genes are involved in fusion with the 5' region of BCL2 in B-cell tumors. Jpn J Cancer Res 92 (2001) 933-940.
    [92]M.A. Frohman, M.K. Dush, G.R. Martin, Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci U S A 85 (1988) 8998-9002.
    [93]A.R. von Bergh, P.M. Wijers, A.J. Groot, S. van Zelderen-Bhola, J.H. Falkenburg, P.M. Kluin, E. Schuuring, Identification of a novel RAS GTPase-activating protein (RASGAP) gene at 9q34 as an MLL fusion partner in a patient with de novo acute myeloid leukemia. Genes Chromosomes Cancer 39 (2004) 324-334.
    [94]M. Osaka, J.D. Rowley, N.J. Zeleznik-Le, MSF (MLL septin-like fusion), a fusion partner gene of MLL, in a therapy-related acute myeloid leukemia with a t(11;17)(q23;q25). Proc Natl Acad Sci U S A 96 (1999) 6428-6433.
    [95]S. Yamamoto, M. Nishi, K. Taniguchi, M. Imayoshi, Y. Ogata, M. Iwanaga, N. Sakai, Y. Hamasaki, E. Ishii, Partial tandem duplication of MLL gene in acute myeloid leukemia with translocation (11;17)(q23;q12-21). Am J Hematol 80 (2005) 46-49.
    [96]M.A. Frohman, On beyond classic RACE (rapid amplification of cDNA ends). PCR Methods Appl 4 (1994) S40-58.
    [97]W.M. Bertling, F. Beier, E. Reichenberger, Determination of 5' ends of specific mRNAs by DNA ligase-dependent amplification. PCR Methods Appl 3 (1993) 95-99.
    [98]A.B. Troutt, M.G. McHeyzer-Williams, B. Pulendran, G.J. Nossal, Ligation-anchored PCR: a simple amplification technique with single-sided specificity. Proc Natl Acad Sci U S A 89 (1992) 9823-9825.
    [99]P.L. Deininger, Full-length cDNA clones: vector-primed cDNA synthesis. Methods Enzymol 152 (1987) 371-389.
    [100]N.D. Borson, W.L. Salo, L.R. Drewes, A lock-docking oligo(dT) primer for 5' and 3' RACE PCR. PCR Methods Appl 2 (1992) 144-148.
    [101]M. Reichel, E. Gillert, I. Breitenlohner, S. Angermuller, G.H. Fey, R. Marschalek, R. Repp, J. Greil, J.D. Beck, Rapid isolation of chromosomal breakpoints from patients with t(4;11) acute lymphoblastic leukemia: implications for basic and clinical research. Leukemia 15 (2001) 286-288.
    [102]A.A. Ferrando, A.T. Look, DNA microarrays in the diagnosis and management of acute lymphoblastic leukemia. Int J Hematol 80 (2004) 395-400.
    [103]A. Andersson, P. Eden, D. Lindgren, J. Nilsson, C. Lassen, J. Heldrup, M. Fontes, A. Borg, F. Mitelman, B. Johansson, M. Hoglund, T. Fioretos, Gene expression profiling of leukemic cell lines reveals conserved molecular signatures among subtypes with specific genetic aberrations. Leukemia 19 (2005) 1042-1050.
    [104]M.E. Ross, R. Mahfouz, M. Onciu, H.C. Liu, X. Zhou, G. Song, S.A. Shurtleff, S. Pounds, C. Cheng, J. Ma, R.C. Ribeiro, J.E. Rubnitz, K. Girtman, W.K. Williams, S.C. Raimondi, D.C. Liang, L.Y. Shih, C.H. Pui, J.R. Downing, Gene expression profiling of pediatric acute myelogenous leukemia. Blood 104 (2004) 3679-3687.
    [105]L. Kearney, S.W. Horsley, Molecular cytogenetics in haematological malignancy: current technology and future prospects. Chromosoma 114 (2005) 286-294.
    [106]L. Bullinger, K. Dohner, E. Bair, S. Frohling, R.F. Schlenk, R. Tibshirani, H. Dohner, J.R. Pollack, Use of Gene-Expression Profiling to Identify Prognostic Subclasses in Adult Acute Myeloid Leukemia. N Engl J Med 350 (2004) 1605-1616.
    [107]A. Kohlmann, C. Schoch, S. Schnittger, M. Dugas, W. Hiddemann, W. Kern, T. Haferlach, Molecular characterization of acute leukemias by use of microarray technology. Genes Chromosomes Cancer 37 (2003) 396-405.
    [108]C. Schoch, A. Kohlmann, S. Schnittger, B. Brors, M. Dugas, S. Mergenthaler, W. Kern, W. Hiddemann, R. Eils, T. Haferlach, Acute myeloid leukemias with reciprocal rearrangements can be distinguished by specific gene expression profiles. Proc Natl Acad Sci U S A 99 (2002) 10008-10013.
    [109]T. Yagi, A. Morimoto, M. Eguchi, S. Hibi, M. Sako, E. Ishii, S. Mizutani, S. Imashuku, M. Ohki, H. Ichikawa, Identification of a gene expression signature associated with pediatric AML prognosis. Blood 102 (2003) 1849-1856.
    [110]P.J. Valk, R.G. Verhaak, M.A. Beijen, C.A. Erpelinck, S. Barjesteh van Waalwijk van Doorn-Khosrovani, J.M. Boer, H.B. Beverloo, M.J. Moorhouse, P.J. van der Spek, B. Lowenberg, R. Delwel, Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 350 (2004) 1617-1628.
    [111]S.A. Armstrong, A.L. Kung, M.E. Mabon, L.B. Silverman, R.W. Stam, M.L. Den Boer, R. Pieters, J.H. Kersey, S.E. Sallan, J.A. Fletcher, T.R. Golub, J.D. Griffin, S.J. Korsmeyer, Inhibition of FLT3 in MLL: Validation of a therapeutic target identified by gene expression based classification. Cancer Cell 3 (2003) 173-183.
    [112]Y. Ruan, P. Le Ber, H.H. Ng, E.T. Liu, Interrogating the transcriptome. Trends Biotechnol 22 (2004) 23-30.
    [113]V.E. Velculescu, L. Zhang, B. Vogelstein, K.W. Kinzler, Serial analysis of gene expression. Science 270 (1995) 484-487.
    [114]S. Saha, A.B. Sparks, C. Rago, V. Akmaev, C.J. Wang, B. Vogelstein, K.W. Kinzler, V.E. Velculescu, Using the transcriptome to annotate the genome. Nat Biotechnol 20 (2002) 508-512.
    [115]C.L. Wei, P. Ng, K.P. Chiu, C.H. Wong, C.C. Ang, L. Lipovich, E.T. Liu, Y. Ruan, 5' Long serial analysis of gene expression (LongSAGE) and 3' LongSAGE for transcriptome characterization and genome annotation. Proc Natl Acad Sci U S A 101 (2004) 11701-11706.
    [116]T. Tucker, M. Marra, J.M. Friedman, Massively parallel sequencing: the next big thing in genetic medicine. Am J Hum Genet 85 (2009) 142-154.
    [117]C. Rotimi, M. Leppert, I. Matsuda, C. Zeng, H. Zhang, C. Adebamowo, I. Ajayi, T. Aniagwu, M. Dixon, Y. Fukushima, D. Macer, P. Marshall, C. Nkwodimmah, A. Peiffer, C. Royal, E. Suda, H. Zhao, V.O. Wang, J. McEwen, Community engagement and informed consent in the International HapMap project. Community Genet 10 (2007) 186-198.
    [118]K. Weigmann, Racial medicine: here to stay? The success of the International HapMap Project and other initiatives may help to overcome racial profiling in medicine, but old habits die hard. EMBO Rep 7 (2006) 246-249.
    [119]J. Stankovich, C.J. Cox, R.B. Tan, D.S. Montgomery, S.J. Huxtable, J.P. Rubio, M.G. Ehm, L. Johnson, H. Butzkueven, T.J. Kilpatrick, T.P. Speed, A.D. Roses, M. Bahlo, S.J. Foote, On the utility of data from the International HapMap Project for Australian association studies. Hum Genet 119 (2006) 220-222.
    [120]D. Hanahan, R.A. Weinberg, The hallmarks of cancer. Cell 100 (2000) 57-70.
    [121]H. Rajagopalan, M.A. Nowak, B. Vogelstein, C. Lengauer, The significance of unstable chromosomes in colorectal cancer. Nat Rev Cancer 3 (2003) 695-701.
    [122]C.A. Maher, C. Kumar-Sinha, X. Cao, S. Kalyana-Sundaram, B. Han, X. Jing, L. Sam, T. Barrette, N. Palanisamy, A.M. Chinnaiyan, Transcriptome sequencing to detect gene fusions in cancer. Nature 458 (2009) 97-101.
    [123]D.W.R. Joseph Sambrook, Molecular Cloning: A Laboratory Manual, in, Cold Spring Harbor Laboratory Press, 2001.
    [124]D. Hanahan, Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166 (1983) 557-580.
    [125]M.A. Caligiuri, S.A. Schichman, M.P. Strout, K. Mrozek, M.R. Baer, S.R. Frankel, M. Barcos, G.P. Herzig, C.M. Croce, C.D. Bloomfield, Molecular rearrangement of the ALL-1 gene in acute myeloid leukemia without cytogenetic evidence of 11q23 chromosomal translocations. Cancer Res 54 (1994) 370-373.
    [126]J. Powell, Enhanced concatemer cloning-a modification to the SAGE (Serial Analysis of Gene Expression) technique. Nucleic Acids Res 26 (1998) 3445-3446.

    下載圖示 校內:2020-12-30公開
    校外:2020-12-30公開
    QR CODE