簡易檢索 / 詳目顯示

研究生: 杜佳峰
Du, Chia-Fong
論文名稱: 單根水平排列氧化鋅微米柱與氮化鎵異質接面藍紫光發光二極體
Ultraviolet/blue Light-Emitting Diodes Based on Single Horizontal ZnO Microrod/GaN Heterojunction
指導教授: 徐旭政
Hsu, Hsu-Cheng
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 68
中文關鍵詞: 氧化鋅電激發發光二極體穿隧效應
外文關鍵詞: ZnO, electroluminescence, light-emitting diode, tunneling effect
相關次數: 點閱:101下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化鋅是一個寬能隙的半導體材料(3.37eV),而且由於它擁有大的激子束縛能(60meV),使之能夠穩定的存在於室溫當中,所以氧化鋅有絕對的潛力去發展藍光雷射和發光二極體。因此,我們利用化學氣相沉積法去生成氧化鋅微米柱並與P型氮化鎵複合製作出發光二極體。
    在實驗中,我們藉由簡單堆疊的方式去製作發光二極體。藉著掃描式電子顯微鏡和拉曼光譜系統的量測結果,我們發現利用化學氣相沉積法所成長的單根氧化鋅微米柱是表面光滑的六角柱,同時也是一個很好的單晶纖鋅礦結構。接著,我們便研究其氧化鋅與P型氮化鎵複合發光二極體的電性與電激發光特性與其機制。我們發現元件在正逆偏壓下皆會放光,特別在逆偏壓下所放出的光為較強的藍紫光。因此在對逆偏壓下操作的二極體做更深入的研究後,我們發現到放光的增強是由於電子穿隧效應的影響。藉著數學模型推導與理論的驗證可以證明元件當中的穿隧效應是由於氧化鋅的缺陷捕捉電子,讓電子更容易地穿隧到氧化鋅的價帶上增加氧化鋅近能帶放光的可能性。

    Zinc oxide (ZnO) is a wide band gap semiconductor (3.37 eV) and its large exciton binding energy of 60 meV makes free excitons stable even at room temperature. Thus it has been suggested that ZnO has enormous potential for developing blue lasers and light emitting diodes. Therefore, we used a chemical vapor deposition method to produce zinc oxide microrod (MR) and combine with the P-type gallium nitride (p-GaN) thin film to form the hybrid light-emitting diode.
    In the experiment, we fabricated the light-emitting diodes simply by a stacked manner. According to the results, we found out that the growth of a single ZnO microrod by chemical vapor deposition has the hexagonal cross section and smooth side facets, and also with single crystalline wurtzite ZnO structure by scanning electron microscope (SEM) and raman spectrum system. Then, we study the ZnO MR/p-GaN hybrid light-emitting diode to realize the current characteristics, optical properties and the electron transport mechanism. The emission from the device can be found under the both forward and reverse bias. Especially, the light emitted under reverse bias has a strong blue-violet light. Therefore doing more in-depth study on the device which was operated under the reverse bias, we found that the emission enhance is attributed to electron tunneling effect. By the theory and mathematical model, we can prove electron tunneling effect caused by the zinc oxide defects which can capture the electron into the deep-level states and make it easier for the electron can tunneling from the deep-level states to the conduction band in n-ZnO. This mechanism can increase the recombination in the ZnO and enhance its near band edge emission.

    Abstract (in Chinese) I Abstract (in English) II Acknowledgements III Contents IV List of Tables VII List of Figures VIII 1 Introduction 1 1.1 Preface 1 1.2 Motivation 6 2 Background Theory 7 2-1 Characteristics of Zinc Oxide 7 2-2 The Spontaneous Emission of Zinc Oxide 9 2-2-1 Ultraviolet Emission 9 2-2-2 Green Emissions 11 2-3 P-N Heterojunction 12 2-3-1 Structure of A P-N Junction 12 2-3-2 Properties of A P-N junction 13 2-3-2-1 Equilibrium (zero bias) 13 2-3-2-2 Forward bias 14 2-3-2-3 Reverse bias 14 2-3-2-4 Depletion Layer and Band Diagram 15 2-4 The Parasitic Resistance Estimation 17 2-5 The CIE Chromatic Coordinate 19 3 Experiment Process 23 3-1 Experimental Procedure 23 3-2 Chemical and Consumable 24 3-3 The Growth System of ZnO Microrod 25 3-3-1 Chemical Vapor Transport System 25 3-3-2 Substrate Clean 28 3-3-3 The growth of ZnO Microrod 29 3-3-4 The Transfer of ZnO Microrod 30 3-4 The Preparation of PMMA Solution 31 3-5 Devices Fabrication 32 4 Measurement and Instrument 34 4-1 Raman Spectroscopy 34 4-2 Field-Emission Scanning Electron Microscopy 37 4-3 Photoluminescence 38 4-4 Electroluminescence 40 4-5 Semiconductor Characterization System 42 5 Experiment Results and Discussions 43 5-1 SEM and Raman Analysis 43 5-2 Continuous-wave PL Analysis 45 5-3 Electrical and Optical Characterization Analysis 47 5-3-1 IV Characteristic 47 5-3-2 Electroluminescence 49 5-3-3 Tunneling Effect Analysis 54 5-3-4 CIE chromaticity Diagram 56 5-3-5 Lifetime Time of the Device 59 6 Conclusion 60 7 Prospective Aspects 61 8 Reference 62

    [1] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, et al., "A comprehensive review of ZnO materials and devices," Journal of Applied Physics, vol. 98, p. 041301, 2005.
    [2] S. Xu and Z. Wang, "One-dimensional ZnO nanostructures: Solution growth and functional properties," Nano Research, vol. 4, pp. 1013-1098, 2011.
    [3] D. I. Son, B. W. Kwon, D. H. Park, W.-S. Seo, Y. Yi, B. Angadi, et al., "Emissive ZnO-graphene quantum dots for white-light-emitting diodes," Nat Nano, vol. 7, pp. 465-471, 2012.
    [4] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, et al., "Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO," Nat Mater, vol. 4, pp. 42-46, 2005.
    [5] Q. Yang, W. Wang, S. Xu, and Z. L. Wang, "Enhancing Light Emission of ZnO Microwire-Based Diodes by Piezo-Phototronic Effect," Nano Letters, vol. 11, pp. 4012-4017, 2011.
    [6] S. Xu, C. Xu, Y. Liu, Y. Hu, R. Yang, Q. Yang, et al., "Ordered Nanowire Array Blue/Near-UV Light Emitting Diodes," Advanced Materials, vol. 22, pp. 4749-4753, 2010.
    [7] T. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang, "III-nitride blue and ultraviolet photonic crystal light emitting diodes," Applied Physics Letters, vol. 84, pp. 466-468, 2004.
    [8] J. Zhong, H. Chen, G. Saraf, Y. Lu, C. K. Choi, J. J. Song, et al., "Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency," Applied Physics Letters, vol. 90, p. 121108, 2007.
    [9] S. J. An, J. H. Chae, G.-C. Yi, and G. H. Park, "Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays," Applied Physics Letters, vol. 92, p. 121108, 2008.
    [10] K. S. Kim, S.-M. Kim, H. Jeong, M. S. Jeong, and G. Y. Jung, "Enhancement of Light Extraction Through the Wave-Guiding Effect of ZnO Sub-microrods in InGaN Blue Light-Emitting Diodes," Advanced Functional Materials, vol. 20, pp. 1076-1082, 2010.
    [11] X. W. Sun, B. Ling, J. L. Zhao, S. T. Tan, Y. Yang, Y. Q. Shen, et al., "Ultraviolet emission from a ZnO rod homojunction light-emitting diode," Applied Physics Letters, vol. 95, p. 133124, 2009.
    [12] B. Xiang, P. Wang, X. Zhang, S. A. Dayeh, D. P. R. Aplin, C. Soci, et al., "Rational Synthesis of p-Type Zinc Oxide Nanowire Arrays Using Simple Chemical Vapor Deposition," Nano Letters, vol. 7, pp. 323-328, 2007.
    [13] C. H. Park, S. B. Zhang, and S.-H. Wei, "Origin of p-type doping difficulty in ZnO: The impurity perspective," Physical Review B, vol. 66, p. 073202, 2002.
    [14] E. Lai, W. Kim, and P. Yang, "Vertical nanowire array-based light emitting diodes," Nano Research, vol. 1, pp. 123-128, 2008.
    [15] H. C. Chen, M. J. Chen, Y. H. Huang, W. C. Sun, W. C. Li, J. R. Yang, et al., "White-Light Electroluminescence From n-ZnO/p-GaN Heterojunction Light-Emitting Diodes at Reverse Breakdown Bias," IEEE Transactions on Electron Devices, vol. 58, pp. 3970-3975, 2011.
    [16] J. Dai, C. X. Xu, and X. W. Sun, "ZnO-Microrod/p-GaN Heterostructured Whispering-Gallery-Mode Microlaser Diodes," Advanced Materials, vol. 23, pp. 4115-4119, 2011.
    [17] A. B. Djurišić, A. M. C. Ng, and X. Y. Chen, "ZnO nanostructures for optoelectronics: Material properties and device applications," Progress in Quantum Electronics, vol. 34, pp. 191-259, 2010.
    [18] Z. Lichun, L. Qingshan, S. Liang, Z. Zhongjun, H. Ruizhi, and Z. Fengzhou, "Electroluminescence from n-ZnO : Ga/p-GaN heterojunction light-emitting diodes with different interfacial layers," Journal of Physics D: Applied Physics, vol. 45, p. 485103, 2012.
    [19] C.-H. Chen, S.-J. Chang, S.-P. Chang, M.-J. Li, I.-C. Chen, T.-J. Hsueh, et al., "Electroluminescence from n-ZnO nanowires/p-GaN heterostructure light-emitting diodes," Applied Physics Letters, vol. 95, p. 223101, 2009.
    [20] M.-C. Jeong, B.-Y. Oh, M.-H. Ham, S.-W. Lee, and J.-M. Myoung, "ZnO-Nanowire-Inserted GaN/ZnO Heterojunction Light-Emitting Diodes," Small, vol. 3, pp. 568-572, 2007.
    [21] X.-M. Zhang, M.-Y. Lu, Y. Zhang, L.-J. Chen, and Z. L. Wang, "Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film," Advanced Materials, vol. 21, pp. 2767-2770, 2009.
    [22] O. Lupan, T. Pauporté, and B. Viana, "Low-Voltage UV-Electroluminescence from ZnO-Nanowire Array/p-GaN Light-Emitting Diodes," Advanced Materials, vol. 22, pp. 3298-3302, 2010.
    [23] W. I. Park and G. C. Yi, "Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN," Advanced Materials, vol. 16, pp. 87-90, 2004.
    [24] A. M. C. Ng, Y. Y. Xi, Y. F. Hsu, A. B. Djurišić, W. K. Chan, S. Gwo, et al., "GaN/ZnO nanorod light emitting diodes with different emission spectra," Nanotechnology, vol. 20, p. 445201, 2009.
    [25] M. Ding, D. Zhao, B. Yao, B. Zhao, and X. Xu, "High brightness light emitting diode based on single ZnO microwire," Chemical Physics Letters, vol. 577, pp. 88-91, 2013.
    [26] G. Y. Zhu, C. X. Xu, Y. Lin, Z. L. Shi, J. T. Li, T. Ding, et al., "Ultraviolet electroluminescence from horizontal ZnO microrods/GaN heterojunction light-emitting diode array," Applied Physics Letters, vol. 101, p. 041110, 2012.
    [27] X. Li, J. Qi, Q. Zhang, Q. Wang, F. Yi, Z. Wang, et al., "Saturated blue-violet electroluminescence from single ZnO micro/nanowire and p-GaN film hybrid light-emitting diodes," Applied Physics Letters, vol. 102, p. 221103, 2013.
    [28] A. B. Djurišić and Y. H. Leung, "Optical Properties of ZnO Nanostructures," Small, vol. 2, pp. 944-961, 2006.
    [29] C. F. Klingshirn, "Semiconductor Optics," Springer, 2007.
    [30] M. Fox, "Optical properties of solids," Oxford University Press, 2010.
    [31] X. Q. Wei, B. Y. Man, M. Liu, C. S. Xue, H. Z. Zhuang, and C. Yang, "Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N2 and O2," Physica B: Condensed Matter, vol. 388, pp. 145-152, 2007.
    [32] B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, et al., "Bound exciton and donor–acceptor pair recombinations in ZnO," physica status solidi (b), vol. 241, pp. 231-260, 2004.
    [33] H. S. Kang, J. S. Kang, J. W. Kim, and S. Y. Lee, "Annealing effect on the property of ultraviolet and green emissions of ZnO thin films," Journal of Applied Physics, vol. 95, pp. 1246-1250, 2004.
    [34] H. S. Kang, J. S. Kang, S. S. Pang, E. S. Shim, and S. Y. Lee, "Variation of light emitting properties of ZnO thin films depending on post-annealing temperature," Materials Science and Engineering: B, vol. 102, pp. 313-316, 2003.
    [35] B. Lin, Z. Fu, Y. Jia, and G. Liao, "Defect Photoluminescence of Undoping ZnO Films and Its Dependence on Annealing Conditions," Journal of The Electrochemical Society, vol. 148, pp. G110-G113, 2001.
    [36] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, "Correlation between photoluminescence and oxygen vacancies in ZnO phosphors," Applied Physics Letters, vol. 68, pp. 403-405, 1996.
    [37] E. G. Bylander, "Surface effects on the low‐energy cathodoluminescence of zinc oxide," Journal of Applied Physics, vol. 49, pp. 1188-1195, 1978.
    [38] S. Chih-Tang, R. N. Noyce, and W. Shockley, "Carrier Generation and Recombination in P-N Junctions and P-N Junction Characteristics," Proceedings of the IRE, vol. 45, pp. 1228-1243, 1957.
    [39] K. C. S. Adel S. Sedra, "Microelectronic Circuits," 2009.
    [40] D. A. Neamen, "Semiconductor Physics and Devices:Basic Principles," 2011.
    [41] H. Z. Guo, F. Y. Lai, and S. Y. Guo, "Principles and applications of light-emitting diode," 2012.
    [42] J. Schanda, "Colorimetry: Understanding the CIE System," 2007.
    [43] A. P. Jephcoat, R. J. Hemley, H. K. Mao, R. E. Cohen, and M. J. Mehl, "Raman spectroscopy and theoretical modeling of BeO at high pressure," Physical Review B, vol. 37, pp. 4727-4734, 1988.
    [44] C.-T. Chien, M.-C. Wu, C.-W. Chen, H.-H. Yang, J.-J. Wu, W.-F. Su, et al., "Polarization-dependent confocal Raman microscopy of an individual ZnO nanorod," Applied Physics Letters, vol. 92, p. 223102, 2008.
    [45] H.-C. Hsu, G.-M. Hsu, Y.-s. Lai, Z. C. Feng, S.-Y. Tseng, A. Lundskog, et al., "Polarized and diameter-dependent Raman scattering from individual aluminum nitride nanowires: The antenna and cavity effects," Applied Physics Letters, vol. 101, p. 121902, 2012.
    [46] Q. Zhang, J. Qi, X. Li, F. Yi, Z. Wang, and Y. Zhang, "Electrically pumped lasing from single ZnO micro/nanowire and poly(3,4-ethylenedioxythiophene):poly(styrenexulfonate) hybrid heterostructures," Applied Physics Letters, vol. 101, p. 043119, 2012.
    [47] U. Kaufmann, M. Kunzer, M. Maier, H. Obloh, A. Ramakrishnan, B. Santic, et al., "Nature of the 2.8 eV photoluminescence band in Mg doped GaN," Applied Physics Letters, vol. 72, pp. 1326-1328, 1998.
    [48] Y. I. Alivov, Ü. Özgür, S. Dogˇan, C. Liu, Y. Moon, X. Gu, et al., "Forward-current electroluminescence from GaN/ZnO double heterostructure diode," Solid-State Electronics, vol. 49, pp. 1693-1696, 2005.
    [49] Z. Shi, X. Xia, W. Yin, S. Zhang, H. Wang, J. Wang, et al., "Dominant ultraviolet electroluminescence from p-ZnO:As/n-SiC(6H) heterojunction light-emitting diodes," Applied Physics Letters, vol. 100, p. 101112, 2012.
    [50] J. J. Dong, X. W. Zhang, Z. G. Yin, J. X. Wang, S. G. Zhang, F. T. Si, et al., "Ultraviolet electroluminescence from ordered ZnO nanorod array/p-GaN light emitting diodes," Applied Physics Letters, vol. 100, pp. -, 2012.
    [51] Z. L. Wang, "Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics," Nano Today, vol. 5, pp. 540-552, 2010.
    [52] J. D. Ye, S. L. Gu, S. M. Zhu, W. Liu, S. M. Liu, R. Zhang, et al., "Electroluminescent and transport mechanisms of n-ZnO∕p-Si heterojunctions," Applied Physics Letters, vol. 88, p. 182112, 2006.
    [53] S. G. Zhang, X. W. Zhang, J. X. Wang, J. B. You, Z. G. Yin, J. J. Dong, et al., "Enhanced electroluminescence from ZnO-based heterojunction light-emitting diodes by hydrogen plasma treatment," physica status solidi (RRL) – Rapid Research Letters, vol. 5, pp. 74-76, 2011.
    [54] S. Makram-Ebeid and M. Lannoo, "Quantum model for phonon-assisted tunnel ionization of deep levels in a semiconductor," Physical Review B, vol. 25, pp. 6406-6424, 1982.
    [55] E. O. KANE, "Theory of tunneling," Journal of Applied Physics, vol. 32, pp. 83-91, 1961.
    [56] Z. Shi, Y. Zhang, X. Cui, B. Wu, S. Zhuang, F. Yang, et al., "Improvement of electroluminescence performance by integration of ZnO nanowires and single-crystalline films on ZnO/GaN heterojunction," Applied Physics Letters, vol. 104, p. 131109, 2014.

    下載圖示 校內:2019-08-22公開
    校外:2019-08-22公開
    QR CODE