簡易檢索 / 詳目顯示

研究生: 王慧君
Wang, Huei-Jyun
論文名稱: 黏滯力對於共平面式電濕潤電極上液滴動態行為之探討
Effects of Viscosity on Spreading Dynamics of a Droplet on Coplanar EWOD Electrodes
指導教授: 呂宗行
Leu, Tzong-Shyng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 82
中文關鍵詞: 電濕潤對稱共平面式電極微機電製程黏滯力瞬態響應
外文關鍵詞: EWOD, MEMS, Response time, Viscosity, Transient dynamic behavior
相關次數: 點閱:121下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為應用電濕潤(Electro-wetting on dielectrics, EWOD)原理驅動晶片上之微液滴,透過改變甘油與水的比例,研究在不同的黏滯力、表面張力、致動力下,對液滴動態行為、響應時間所造成的影響。主要實驗設計為利用共平面式(Coplanar)對稱(Symmetric)之電極設計以及微機電製程加工技術來驅動微液滴於電極表面上做特定方向的驅動。
    影響液滴於電極表面動態行為因素包含:電壓、表面張力、黏滯力等,經本研究的實驗結果顯示液滴響應時間和黏滯力呈正相關。同一濃度甘油水溶液,在三種電壓大小驅動下,160 V驅動達安定時間最短,80 V居中,120 V最長,此現象與電濕潤致動力、液滴表面張力及黏滯力三者之合力有關。電濕潤現象為二階非線性系統,由中低電壓120V、80V驅動為二階過阻尼系統;高電壓160 V驅動則呈二階欠阻尼系統。經因次分析,得到一個能夠預測液滴動態行為的無因次液體性質參數 ,當 值高於3.6878時,具有表面波動的情形,當 值為14.9742時,整個系統具有最短的穩定時間0.2s。並利用線性回歸將實驗數據擬合出一個預測模型。

    In this study, electro-wetting on dielectrics (EWOD) is applied to drive a droplet on coplanar electrodes. Coplanar electrodes patterned on the substrate allow a true sessile condition with no wire into the droplet. This study investigate the effects of viscosity and surface tension on spreading dynamics, including response time and spreading behaviors in response to various DC voltages, based on experiment. MEMS microfabrication with coplanar symmetric electrode design is used for fabricating the EWOD devices in this study. When a voltage is applied, the EWOD device generates symmetric electro-wetting force. The droplet is driven in a specific direction.
    The main factor that affects droplet dynamic motion is the applied voltage, surface tension and viscosity. It is experimentally found that settling time of contact line (i.e., time to reach equilibrium radius) are proportional to viscosity. It is also found that settling time is dependent on the force balance between the driving electrical force, surface tension force and viscous force. The spreading behaviors of a droplet can be simplified into a model of the second-order nonlinear dynamic system. One of the main factor that affects droplet dynamic motion is the droplet sustained oscillating behavior in the height. To the best of our knowledge, this is the first detailed study of viscosity and surface wave of the spreading behaviors over a broad range of viscosities (0.9−1011 mPa·s) under various step responses.
    In this study, the contact line and height dynamic behaviors of a droplet on a plane are analyzed. This study proves that the applied voltage, viscosity, surface tension of a droplet is significantly affect the droplet dynamic behaviors.

    摘要 I ABSTRACT II 誌謝 V 目錄 VI 表目錄 X 圖目錄 XI 符號索引 XVI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 文獻回顧 3 1.3.1 電濕潤效應的應用 3 1.3.2 電極設計與液滴驅動機制 4 1.3.3 液滴受電濕潤力之動態行為 6 第二章 原理分析 22 2.1 表面張力定義 22 2.2 毛細長度定義 22 2.3 球缺液滴定義 23 2.3.1 球缺液滴外形 23 2.3.2 接觸角 23 2.3.3 球缺液滴表面周長 24 2.4 表面濕潤度定義 25 2.4.1 Lippmann’s Equation 25 2.4.2 改變液滴接觸角的因子 25 2.5 電濕潤原理 27 2.5.1 單電極電濕潤現象 Simple electrode-wetting 27 2.5.2 共平面電極電濕潤 Coplanar electrode-wetting 27 2.6 電濕潤電容原理 28 2.6.1 單電極電容造成之表面張力 28 2.6.2 共平面式三電極電容造成之表面張力 29 2.6.3 水平方向共平面電極電濕潤力 30 第三章 電濕潤電極之設計與製作 34 3.1 電極設計目標及原理 34 3.2 電濕潤電極設計與尺寸 34 3.3 電濕潤驅動晶片的陣列 35 3.4 電濕潤驅動晶片製作 35 3.4.1 晶片清潔 35 3.4.2 金屬薄膜沈積 36 3.4.3 黃光微影製程 37 3.4.4 金屬蝕刻製程 38 3.4.5 介電薄膜製作 38 3.4.6 表面疏水層製作 39 第四章 實驗設計與方法 42 4.1 甘油與水比例配置 42 4.2 電濕潤驅動液滴靜態接觸角量測 43 4.3 電濕潤驅動液滴動態接觸線及響應時間量測 43 4.4 實驗儀器與影像處理軟體 44 4.4.1 訊號產生器 (Signal Generator) 44 4.4.2 訊號放大器 (Signal Amplifier) 44 4.4.3 示波器 (Oscilloscope) 44 4.4.4 高速攝影機 (High speed camera) 45 4.4.5 接觸角分析儀 (FTA125) 45 4.4.6 Image J 45 4.4.7 Matlab 46 第五章 結果與討論 50 5.1 因次分析 50 5.2 電濕潤電極驅動液滴靜態接觸角量測結果 56 5.3 液滴之動態行為探討 57 5.3.1 電濕潤驅動之接觸線瞬態變化量量測 59 5.3.2 液滴電濕潤效應安定時間量測 59 5.3.3 液滴高度穩定時間 60 5.3.4 各濃度下致動力與雷諾數之關係 62 5.3.5 各濃度下致動力與時間尺度之關係 63 5.3.6 液滴性質、致動力與時間尺度之線性回歸關係 63 第六章 結論與未來工作 78 6.1 結論 78 6.2 未來工作 79 參考文獻 80

    [1] Chan-HamYung, Experimental Study of Condensation Heat Transfer by Using Electrowetting Techniques, National Cheng Kung University, 2012.
    [2] F. Krogmann, W. Moench and H. Zappe, A MEMS-based variable micro-lens system, Journal of Optics A: Pure and Applied Optics, Vol. 8, (7), p. S330, 2006.
    [3] B. Feenstra, R. Hayes, R. Van Dijk, R. Boom, M. Wagemans, I. G. Camps, A. Giraldo and B. Heijden, Electrowetting-based displays: bringing microfluidics alive on-screen, Micro Electro Mechanical Systems, 2006. MEMS 2006 Istanbul. 19th IEEE International Conference on, pp. 48-53, 2006.
    [4] J. Gong, All-electronic droplet generation on-chip with real-time feedback control for EWOD digital microfluidics, Lab on a Chip, Vol. 8, (6), pp. 898-906, 2008.
    [5] T. Krupenkin and J. A. Taylor, Reverse electrowetting as a new approach to high-power energy harvesting, Nature communications, Vol. 2, p. 448, 2011.
    [6] M. Kang and R. Yue, Variable-focus liquid lens based on EWOD, Journal of Adhesion Science and Technology, Vol. 26, (12-17), pp. 1941-1946, 2012.
    [7] K. Zhou, J. Heikenfeld, K. Dean, E. Howard and M. Johnson, A full description of a simple and scalable fabrication process for electrowetting displays, Journal of Micromechanics and Microengineering, Vol. 19, (6), p. 065029, 2009.
    [8] M. Washizu, Electrostatic actuation of liquid droplets for micro-reactor applications, IEEE transactions on industry applications, Vol. 34, (4), pp. 732-737, 1998.
    [9] S. K. Cho, H. Moon and C.-J. Kim, Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits, Journal of Microelectromechanical systems, Vol. 12, (1), pp. 70-80, 2003.
    [10] U.-C. Yi and C.-J. Kim, Characterization of electrowetting actuation on addressable single-side coplanar electrodes, Journal of Micromechanics and Microengineering, Vol. 16, (10), p. 2053, 2006.
    [11] U.-C. Yi and C.-J. Kim, EWOD actuation with electrode-free cover plate. Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS'05. The 13th International Conference on, IEEE, pp.89-92, 2005.
    [12] T.-T. Wang, P.-W. Huang and S.-K. Fan, Droplets oscillation and continuous pumping by asymmetric electrowetting. Micro Electro Mechanical Systems, 2006. MEMS 2006 Istanbul. 19th IEEE International Conference on, IEEE, pp.174-177, 2006.
    [13] J. M. Oh, S. H. Ko and K. H. Kang, Analysis of electrowetting-driven spreading of a drop in air, Physics of Fluids, Vol. 22, (3), p. 032002, 2010.
    [14] S. R. Annapragada, S. Dash, S. V. Garimella and J. Y. Murthy, Dynamics of droplet motion under electrowetting actuation, Langmuir, Vol. 27, (13), pp. 8198-8204, 2011.
    [15] J. Hong, Y. K. Kim, K. H. Kang, J. Kim and S. J. Lee, Effects of drop viscosity on oscillation dynamics induced by AC electrowetting, Sensors and Actuators B: Chemical, Vol. 190, pp. 48-54, 2014.
    [16] J. Restolho, J. L. Mata and B. Saramago, Electrowetting of ionic liquids: Contact angle saturation and irreversibility, The Journal of Physical Chemistry C, Vol. 113, (21), pp. 9321-9327, 2009.
    [17] P. Sen and C.-J. C. Kim, Capillary spreading dynamics of electrowetted sessile droplets in air, Langmuir, Vol. 25, (8), pp. 4302-4305, 2009.
    [18] J. B. Chae, J. Hong, S. J. Lee and S. K. Chung, Enhancement of response speed of viscous fluids using overdrive voltage, Sensors and Actuators B: Chemical, Vol. 209, pp. 56-60, 2015.
    [19] Y. Lu, A. Sur, C. Pascente, S. R. Annapragada, P. Ruchhoeft and D. Liu, Dynamics of droplet motion induced by Electrowetting, International Journal of Heat and Mass Transfer, Vol. 106, pp. 920-931, 2017.
    [20] A. Torkkeli, Droplet microfluidics on a planar surface, VTT Technical Research Centre of Finland, 2003.

    無法下載圖示 校內:2022-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE