| 研究生: |
羅立丞 Luo, Li-Cheng |
|---|---|
| 論文名稱: |
透過分子動力學模擬研究鈦酸鉍鈉有序與無序結構及其極化行為 Investigation of Ordered and Disordered Structures and Their Polarization Behavior in Bismuth Sodium Titanate via Molecular Dynamics Simulations |
| 指導教授: |
齊孝定
Qi, Xiao-Ding 許文東 Hsu, Wen-Dung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
智慧半導體及永續製造學院 - 半導體封測學位學程 Program on Semiconductor Packaging and Testing |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 139 |
| 中文關鍵詞: | 鈦酸鉍鈉 、鈣鈦礦結構 、鐵電性 、吉布斯自由能 、分子動力學模擬 |
| 外文關鍵詞: | Bi0.5Na0.5TiO3, perovskite structure, ferroelectricity, Gibbs free energy, molecular dynamics simulation |
| 相關次數: | 點閱:21 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以鐵電材料鈦酸鉍鈉(Bi0.5Na0.5TiO3)為研究對象,探討A-site原子有序與無序排列對繞射特徵、吉布斯自由能與極化行為之影響。鈦酸鉍鈉為鈣鈦礦結構材料,其A-site由Bi與Na原子佔據,室溫下鈦酸鉍鈉為rhombohedral結構。
由於鈦酸鉍鈉的繞射結果中可觀察到額外的繞射峰,顯示其可能存在更為複雜的結構特徵。本研究開發一套排列篩選程式,篩選Bi與Na原子於A-site上的有序排列結構,並與無序排列結構進行比較。透過模擬不同排列下的繞射圖譜,結果發現無序排列最符合實際材料中的主要佔據方式,但有序排列可產生對應於文獻中觀察到的特徵繞射峰。此結果表明文獻製備之鈦酸鉍鈉的A-site以無序為基底並具備部分區域有序性。
本研究先藉由密度泛函理論計算鈦酸鉍鈉的Bader電荷、波恩有效電荷與彈性常數,再利用GULP擬合經驗位能函數。透過擬合完成之經驗位能函數由分子動力學模擬計算鈦酸鉍鈉有序與無序結構之熱力學性質以及極化能力。
吉布斯自由能的計算結果指出,由於無序排列的內能較高,在低溫時,有序排列具有較低的吉布斯自由能,較為穩定;但在常見的鈦酸鉍鈉陶瓷製備溫度條件下,無序排列因系統熵較高,其自由能反而較低,而成為穩定相。說明在高溫製程中,鈦酸鉍鈉的A-site傾向形成無序排列結構,冷卻至室溫後則傾向轉為有序排列結構,因此高溫條件製備的鈦酸鉍鈉可能具有無序為基底的部分有序性。
本研究亦透過核殼模型進行分子動力學模擬,探討鈦酸鉍鈉有序與無序排列結構的鐵電性質。結果顯示,兩者在外加電場下的極化響應與關閉電場後的殘餘極化量相當接近。
This study investigates the effects of A-site cation ordering and disordering on the diffraction characteristics, Gibbs free energy, and polarization behavior of the ferroelectric material bismuth sodium titanate (Bi0.5Na0.5TiO3).
Gibbs free energy calculations based on molecular dynamics reveal that, although the disordered structure possesses higher internal energy, it becomes thermodynamically favorable at elevated temperatures due to its greater configurational entropy. Below 1000 K, the ordered structure remains more stable; however, at higher temperatures—such as those typically used in solid-state synthesis—the disordered configuration is energetically preferred. Upon cooling, the system tends to transition toward partial ordering, which explains why experimental diffraction patterns often exhibit a predominantly disordered phase accompanied by signatures of local ordering.
Furthermore, the ferroelectric properties of both A-site ordered and disordered configurations were evaluated through molecular dynamics simulations employing a core-shell model. The results reveal that their polarization responses under applied electric fields, as well as their remanent polarization after field removal, are notably similar.
[1] P. B. Littlewood, “Physics of Ferroelectrics,” 27 Jan. 2002.
[2] G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, N. Krainik, “New Ferroelectrics of Complex Composition,” Soviet Physics, Solid State, 2, 2651-2654, 1961.
[3] V. V. Ivanova, A. G. Kapyshev, Y. N. Venevcev, G. S. Zhdanov, “X-ray determination of unit cells of K0.5Bi0.5TiO3 and Na0.5Bi0.5TiO3 and high-temperature phase transitions in K0.5Bi0.5TiO3,” Izvestiya Akademii Nauk SSSR, Seriya Fizicheskaya, 26, 354–356, 1962.
[4] T. Correia, M. Stewart, A. Ellmore, K. Albertsen, “Lead‐Free Ceramics with High Energy Density and Reduced Losses for High Temperature Applications,” Adv. Eng. Mater, 19, 2017.
[5] H. Pan, Y. Zeng, Y. Shen, Y.-H. Lin, J. Ma, L. Li, C.-W. Nan, “BiFeO3–SrTiO3 thin film as a new lead-free relaxor-ferroelectric capacitor with ultrahigh energy storage performance,” J. Mater. Chem. A, 5, 5920-5926, 2017.
[6] Y. Sun, H. Liu, F. Liu et al. “Dielectric and electrical energy storage properties of BiFeO3–BaTiO3–SrTiO3 ternary bulk ceramics.” J Mater Sci: Mater Electron, 32, 21188–21196, 2021.
[7] V. M. Goldschmidt, “Die Gesetze Der Krystallochemie,” Naturwissenschaften, 14, 477–485, 1926.
[8] Fu. Desheng, Mitsuru Itoh. “Role of Ca Off-Centering in Tuning Ferroelectric Phase Transitions in Ba(Zr,Ti)O3System,” Ferroelectric Materials - Synthesis and Characterization, InTech, 29 July 2015.
[9] Sakata, Koichiro, and Yoichiro Masuda. "Ferroelectric and antiferroelectric properties of (Na0.5Bi0.5)TiO3-SrTiO3 solid solution ceramics." Ferroelectrics 7.1, 347-349, 1974.
[10] J. A. Zvirgzds, P. P. Kapostin, J. V. Zvirgzde, T. V. Kruzina. “X-ray study of phase transitions in ferroelectric Na0.5Bi0.5TiO3.” Ferroelectrics, 40(1), 75-77, 1982.
[11] J. Suchanicz, and J. Kwapulinski, "X-ray diffraction study of the phase transitions in Na0. 5Bi0. 5TiO3." Ferroelectrics 165.1: 249-253, 1995.
[12] Wen. Zhu, Zong. Yang. Shen, Wei Deng, Kai Li, Wenqin Luo, Fusheng Song, Xiaojun Zeng, Zhumei Wang, Yueming Li, “A review: (Bi,Na)TiO3 (BNT)-based energy storage ceramics, Journal of Materiomics,” Volume 10, Issue 1, 86-123, 2024.
[13] S. B. Vakhrushev, B. G. Ivanitskij, B. E. Kvyatkovskij, A. N. Majstrenko, R. S. Malysheva, N. M. Okuneva, N. M. Parfenova, “Neutron-diffraction study on sodium-bismuth titanate.” Fizika Tverdogo Tela, 25(9), 2613-2616, 1983
[14] Sangwook. Kim et al. "A correlation between piezoelectric response and crystallographic structural parameter observed in lead-free (1-x)(Bi0.5Na0.5) TiO3–xSrTiO3 piezoelectrics." Journal of the European Ceramic Society 37.4, 1379-1386, 2017.
[15] Krauss, Werner, et al. "Piezoelectric properties and phase transition temperatures of the solid solution of (1-x)(Bi0.5Na0.5)TiO3–xSrTiO3." Journal of the European Ceramic Society, 30.8, 1827-1832, 2010.
[16] Qing Xu, Xinliang Chen, Wen Chen, Shutao Chen, Bokhee Kim, Joonghee Lee, “Synthesis, ferroelectric and piezoelectric properties of some (Bi0.5Na0.5)TiO3 system compositions,” Materials Letters, Volume 59, Issues 19–20, Pages 2437-2441, 2005.
[17] N.A. Halim, T.S. Velayutham, W. H. Abd. Majid, “Pyroelectric, ferroelectric, piezoelectric and dielectric properties of Na0.5Bi0.5TiO3 ceramic prepared by sol-gel method,” Ceramics International, Volume 42, Issue 14, Pages 15664-15670, 2016.
[18] Ruzhong Zuo, Shi Su, Yang Wu, Jian Fu, Min Wang, Longtu Li, “Influence of A-site nonstoichiometry on sintering, microstructure and electrical properties of (Bi0.5Na0.5)TiO3 ceramics, ” Materials Chemistry and Physics, Volume 110, Issues 2–3, Pages 311-315, 2008.
[19] J. Suchanicz, "Elastic constants of Na0.5Bi0.5TiO3 single crystal." Journal of materials science, 37, 489-491, 2002.
[20] Hohenberg, Pierre, Walter, Kohn. "Inhomogeneous electron gas." Physical review 136.3B, B864, 1964.
[21] Walter, Kohn. and Lu Jeu Sham. "Self-consistent equations including exchange and correlation effects." Physical review 140.4A, A1133, 1965.
[22] P. E. Blochl, "Projector augmented-wave method." Physical Review B, 50(24), 17953–17979, Dec 1994.
[23] Richard Buckingham A. "The classical equation of state of gaseous helium, neon and argon." Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 168.933: 264-283, 1938.
[24] Paul. Peter. Ewald "Ewald summation." Ann. Phys 369.253, 1-2, 1921.
[25] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S. Crozier, P. J. in 't Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, S. J. Plimpton, “LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales,” Comp Phys Comm, 271, 10817, 2022.
[26] Loup. Verlet, "Computer" experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules." Physical review 159.1, 98, 1967.
[27] Shuichi. Nosé, "A unified formulation of the constant temperature molecular dynamics methods." The Journal of chemical physics 81.1, 511-519, 1984.
[28] Jürgen. Schlitter, "Estimation of absolute and relative entropies of macromolecules using the covariance matrix." Chemical physics letters, 215.6, 617-621, 1993.
[29] Anubhav. Jain, et al. "Commentary: The Materials Project: A materials genome approach to accelerating materials innovation." APL materials 1.1, 2013.
[30] Perdew, John P., Kieron Burke, and Matthias Ernzerhof. "Generalized gradient approximation made simple." Physical review letters, 77.18, 3865, 1996.
[31] R. F. Bader, and T. T. Nguyen-Dang. "Quantum theory of atoms in molecules–Dalton revisited." Advances in quantum chemistry. Vol. 14. Academic Press, 63-124, 1981.
[32] W. Tang, E. Sanville, and G. Henkelman “A grid-based Bader analysis algorithm without lattice bias,” J. Phys.: Condens. Matter 21, 084204, 2009.
[33] E. Sanville, S. D. Kenny, R. Smith, and G. Henkelman “An improved grid-based algorithm for Bader charge allocation,” J. Comp. Chem. 28, 899-908, 2007.
[34] G. Henkelman, A. Arnaldsson, and H. Jónsson, “A fast and robust algorithm for Bader decomposition of charge density,” Comput. Mater. Sci. 36, 354-360, 2006.
[35] M. Yu and D. R. Trinkle, “Accurate and efficient algorithm for Bader charge integration,” J. Chem. Phys. 134, 064111, 2011.
[36] Jill. Crawford, and P. Jacobs. "Point defect energies for strontium titanate: A pair-potentials study." Journal of Solid State Chemistry 144.2, 423-429, 1999.
[37] C. F. Wu, and J.H. Jean. "Constrained sintering of Bi2O3‐doped ZnO." International Journal of Ceramic Engineering & Science 1.3, 155-165, 2019.
[38] Qi-Feng, Chen, et al. "Melting and Grüneisen parameters of NaCl at high pressure." Chinese Physics, 13.7, 1091, 2004.
[39] S. M. Woodley, et al. "The prediction of inorganic crystal structures using a genetic algorithm and energy minimization." Physical Chemistry Chemical Physics, 1.10, 2535-2542, 1999.
[40] B. S. Thomas, , N. A. Marks, and B. D. Begg. "Developing pair potentials for simulating radiation damage in complex oxides." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 228.1-4, 288-292, 2005.
[41] K. V. Mirskaya, "Combining rules for interatomic potential functions of Buckingham form." Tetrahedron, 29.5, 679-682, 1973.
[42] M. Sepliarsky, et al. "Atomic-level simulation of ferroelectricity in oxide materials." Current Opinion in Solid State and Materials Science, 9.3, 107-113, 2005.
[43] J.D. Gale, "GULP - a computer program for the symmetry adapted simulation of solids, " JCS Faraday Trans., 93, 629, 1997.
[44] J.D. Gale, "Empirical potential derivation for ionic materials," Phil. Mag. B, 73, 3, 1996.
[45] J.D. Gale and A.L. Rohl, “The General Utility Lattice Program,” Mol. Simul., 29, 291-341, 2003.
[46] Issa Kriaa, Ahmed Maalej, “Pyroelectric energy harvesting, storage properties and electrocaloric effect of BNBT-ST ferroelectric ceramics,” Journal of Energy Storage, Volume 102, Part A, 114044, 2024.
[47] Xue fan Zhou, Zhong Wu, Chao Jiang, Hang Luo, Zhongna Yan, Dou Zhang, “Molten salt synthesis and characterization of lead-free (1-x)Na0.5Bi0.5TiO3-xSrTiO3 (x = 0, 0.10, 0.26) whiskers,” Ceramics International, Volume 44, Issue 8, Pages 9174-9180, 2018
[48] Lee, Wei-Chih, et al. "Crystal structure, dielectric and ferroelectric properties of (Bi0.5Na0.5) TiO3 – (Ba, Sr) TiO3 lead-free piezoelectric ceramics." Journal of alloys and compounds, 492.1-2, 307-312, 2010.
[49] He, Hong ying, et al. "Thermal and compositional driven relaxor ferroelectric behaviours of lead-free Bi0.5 Na0.5TiO3-SrTiO3 ceramics." Journal of Materials Chemistry C 8.7, 2411-2418, 2020.
[50] Shuichi Nosé, “A unified formulation of the constant temperature molecular dynamics methods”, J. Chem. Phys. 81, 511–519, 1984.
[51] W. G. Hoover, "Canonical dynamics: Equilibrium phase-space distributions", Phys Rev A Gen Phys, 31(3), 1695-1697, Mar 1985.